Характер физических законов - читать онлайн книгу. Автор: Ричард Фейнман cтр.№ 20

читать книги онлайн бесплатно
 
 

Онлайн книга - Характер физических законов | Автор книги - Ричард Фейнман

Cтраница 20
читать онлайн книги бесплатно

Время шло, и после Ньютона были открыты новые законы, и в их числе законы электродинамики Максвелла [16]. Одно из следствий законов электродинамики заключается в том, что должны существовать волны, электромагнитные волны (световые волны могут служить их примером), которые распространялись бы со скоростью 299 792 км/с, ни больше ни меньше. То есть именно 299 792 км/с, что бы там ни было. Но тогда нетрудно решить, что же находится в покое, а что движется, так как закон, согласно которому свет распространяется со скоростью ~ 300 000 км/с, наверняка (с первого взгляда) не таков, чтобы позволить наблюдателю двигаться без каких-либо видимых изменений. Очевидно, не правда ли, что если вы находитесь в космическом корабле и летите со скоростью 200 000 км/с в каком-то направлении, а я останусь на Земле и направлю пучок света, распространяющийся со скоростью 300 000 км/с, через маленькую дырочку в вашей кабине, то, поскольку вы движетесь со скоростью 200 000 км/с, вам будет казаться, что свет распространяется лишь со скоростью 100 000 км/с. Но, как выяснилось, если действительно поставить такой эксперимент, то вам будет казаться, что свет распространяется со скоростью 300 000 км/с относительно вас, а мне – что он распространяется со скоростью 300 000 км/с относительно меня!

Явления природы не так-то просто понять, и описанный экспериментальный факт настолько противоречил здравому смыслу, что и сейчас еще находятся люди, не верящие в этот результат! Но раз за разом опыты показали, что скорость распространения света равна 300 000 км/с независимо от того, как быстро мы сами движемся. Возникает вопрос, как же это может быть. Эйнштейн, так же как и Пуанкаре [17], понял, что единственное объяснение, позволяющее двум движущимся относительно друг друга наблюдателям получать одинаковое значение скорости света, заключается в том, что их восприятие времени и пространства неодинаково, что часы космического корабля идут не так, как на Земле, и т. д. Вы можете возразить: «Но если часы все же идут и я, находясь в космическом корабле, стану наблюдать за ними, то я смогу заметить, что они отстают». Нет, не можете, часы вашего мозга также будут идти медленнее обычного! Вот так, предусмотрев соответствующие изменения абсолютно всех процессов, происходящих в космическом корабле, удалось сочинить теорию, в соответствии с которой скорость света в космическом корабле равна 300 000 космических километров в космическую секунду, а здесь, на Земле, – 300 000 моих километров в мою секунду. Это очень хитрая теория, и достойно удивления уже то, что построить такую теорию вообще оказалось возможным.

Я уже упоминал об одном из следствий принципа относительности, а именно о невозможности определить изнутри скорость движения по прямой. Помните, в предыдущей лекции речь шла о двух космических кораблях A и B (см. рис. 18). В каждом конце корабля B происходило некоторое событие. Человек, стоящий посредине этого корабля, утверждал, что два события (x и у) в двух противоположных концах его корабля произошли одновременно, так как, стоя посреди корабля, он увидел световой сигнал о каждом из этих событий одновременно. Но человек, находившийся в корабле A, движущемся в это время с постоянной скоростью по отношению к кораблю B, увидел оба эти явления не сразу, а сначала x и уж потом у, так как световой сигнал о событии x дошел до него раньше, чем сигнал о событии у. Ведь он двигался вперед. Вы видите одно из следствий симметрии относительно прямолинейного движения с постоянной скоростью (где слово «симметрия» должно означать, что вы не можете решить, чья точка зрения правильна); когда я говорю, что событие происходит в мире «сейчас», в этом нет никакого смысла. Если вы движетесь по прямой с постоянной скоростью, то события, которые кажутся вам одновременными, – это не те события, которые кажутся одновременными мне, хотя бы в тот самый момент, когда я наблюдаю одновременные события, мы и находились в одной точке. Нам не удастся договориться, что следует понимать под словом «сейчас» на расстоянии. А это приводит к необходимости коренных изменений наших представлений о пространстве и времени, чтобы можно было сохранить принцип, согласно которому нельзя обнаружить изнутри равномерное движение по прямой. Ведь получается, что с одной точки зрения два события кажутся одновременными, а с другой – нет, если они происходят не в одном месте, а разнесены на определенное расстояние.

Нетрудно видеть, что это очень напоминает преобразование пространственных координат. Если я встану лицом к аудитории, то рампа эстрады, на которой я нахожусь, оказывается на одном уровне со мной. У нее постоянное x и меняющиеся значения у. Но если я повернусь на 90° и посмотрю на те же стены, но уже с новой точки зрения, то одна из них окажется впереди меня, а другая сзади, и им соответствуют разные значения xr. Точно таким же образом два события, которые с одной точки зрения кажутся одновременными (одно и то же значение t), с другой – могут казаться происходящими в разные моменты времени (разные значения tr). Другими словами, мы обобщаем здесь поворот в двухмерном пространстве, о котором речь шла раньше, на случай пространства и времени, образующих вместе четырехмерную Вселенную. Добавление времени в качестве новой координаты к трем пространственным координатам – это не просто искусственный прием, как объясняется в большинстве научно-популярных книг, где говорится: «Мы добавляем временную координату к пространственным, потому что нельзя ограничиться указанием местоположения точки, нужно сказать еще и когда». Все это верно, но это не привело бы еще к образованию настоящего четырехмерного мира. Это означало бы лишь положить рядом две разные вещи. Настоящее пространство в известном смысле характеризуется тем, что оно существует само по себе, независимо от какой-то частной выбранной точки зрения, и когда мы смотрим под разными углами, часть того, что «спереди» или «сзади», может смешаться с тем, что «справа» или «слева». Точно так же и то, что «было» или «будет» во времени, может частично смешиваться с тем, что «там» или «здесь» в пространстве. Пространство и время оказываются неразрывно связанными между собой. После этого открытия Минковский заметил, что «отныне пространство само по себе и время само по себе должны обратиться в фикции и лишь некоторый вид соединения обоих должен еще сохранить самостоятельность».

Этим конкретным примером я занимаюсь так подробно потому, что, по сути дела, именно отсюда и начинается настоящее изучение симметрии физических законов. Именно Пуанкаре предложил исследовать, что можно делать с уравнениями, не меняя при этом их вида. Именно ему принадлежит идея обратить внимание на свойства симметрии физических законов. В симметрии относительно пространственных переносов, сдвигов во времени и т. п. не было особой глубины. Симметрия же относительно равномерного прямолинейного движения очень интересна, и из нее вытекают самые разнообразные следствия. Более того, эти следствия можно распространять на законы, которых мы не знаем. Например, предполагая, что этот принцип справедлив и для распада m-мезонов, мы можем утверждать, что при их помощи нельзя узнать, как быстро движется космический корабль. А это значит, что мы знаем хоть что-то о законах m-мезонного распада, хотя у нас нет никаких сведений о том, чем же, собственно, вызывается этот распад.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию