Наука. Величайшие теории. Выпуск 6. Когда фотон встречает электрон. Фейнман. Квантовая электродинамика - читать онлайн книгу. Автор: Мигуэль Ангел Сабадел cтр.№ 11

читать книги онлайн бесплатно
 
 

Онлайн книга - Наука. Величайшие теории. Выпуск 6. Когда фотон встречает электрон. Фейнман. Квантовая электродинамика | Автор книги - Мигуэль Ангел Сабадел

Cтраница 11
читать онлайн книги бесплатно


Наука. Величайшие теории. Выпуск 6. Когда фотон встречает электрон. Фейнман. Квантовая электродинамика

Очень часто (и неправильно) спин определяют как направление вращения субатомной частицы. На самом деле речь идет об исключительно квантовом понятии, не имеющем классических аналогов.


Благодаря творческому подходу к математике Дирак разработал уравнение, объединявшее две великие теории начала XX века. Это действительно был подвиг, концептуальный триумф. Включив четырехмерное пространство-время в квантовую теорию, он получил четвертую степень свободы электрона, которую определил как спин. Каким бы ни был спин, он ни в коем случае не означал вращения электрона. Речь шла исключительно о квантовом понятии, не связанном с классической физикой. Таким образом, спин был и остается внутренним свойством электрона, полностью отличным от других, таких, например, как орбитальный момент, который описывает перемещение электрона вокруг атомного ядра. Интерпретация спина остается неясной и в наши дни, но мы знаем, что при наличии магнитного поля он может иметь два направления: вверх и вниз. Эта особенность электрона позволяет, например, использовать магнитно-резонансную томографию в больницах.

Уравнение Дирака распространилось словно лесной пожар и получило широкое признание. Тем не менее существовала одна проблема: два состояния электрона с различной ориентацией спина, полученные Дираком, представляли только половину решения. Существовали два других состояния, которые характеризовались загадочной отрицательной энергией. Эти два «дополнительных» решения означали, что электрон мог перейти из своего нормального состояния с положительной энергией и отрицательным зарядом в состояние с отрицательной энергией и положительным зарядом. Экспериментально такой переход никем не наблюдался, что ставило под сомнение обоснованность уравнения Дирака. Бор писал в 1928 году: «Дирак был здесь (в Лейпциге, в июне 1928 года) и произнес хорошую речь о своей гениальной теории. Однако он знает не больше, чем мы, как решить задачу + е - е».

Дирак бился над этой проблемой в течение двух лет и, наконец, в декабре 1929 года нашел решение. Он предположил, что отрицательные уровни энергии заполнены морем ненаблюдаемых электронов. Они ни с чем не взаимодействуют: они находятся за декорациями театра, перед которыми играют актеры. Актеры и представляют мир положительной энергии, которую можно измерить. Но бывает, что один из электронов, которые живут в этом море, при приложении внешней энергии «выпрыгивает», оставляя за собой «дырку». Дирак считал, что эта «дырка» будет принимать вид протона. «Выпрыгнувший» же электрон станет обычным наблюдаемым электроном. Однако коллеги напомнили Дираку, что электрон имеет массу в 2000 раз меньше, чем протон, и значит, невозможно, чтобы, выпрыгивая из моря отрицательной энергии, он оставил за собой пустоту в 2000 раз тяжелее, чем он сам. Дирак признал свою ошибку и в 1931 году согласился, что «дыра» должна иметь такую же массу, как и электрон, но с положительным электрическим зарядом: «[Мы столкнулись лицом к лицу] с новой частицей, неизвестной физике, которая имеет такую же массу, как и электрон, но с противоположным зарядом».


Наука. Величайшие теории. Выпуск 6. Когда фотон встречает электрон. Фейнман. Квантовая электродинамика

«Море Дирака», которое объясняет существование антиматерии.


В 1932 году американский физик Карл Дейвид Андерсон обнаружил эту загадочную частицу: позитрон, античастица электрона. Данное открытие подтвердило правоту уравнения Дирака и одного из великих предсказаний релятивистской квантовой механики.

Тем не менее уравнение Дирака не давало полного объединения теории относительности и квантовой теории, так как оно не описывало ни того, что происходит во время столкновения между электроном и фотоном, ни того, что происходит в процессе аннигиляции, когда позитрон сталкивается с электроном, выделяя два или три фотона с очень большой энергией. Но чтобы понять суть этих проблем, нам необходимо переместиться во времени и вернуться в середину XIX века, чтобы познакомиться с одним из лучших физиков-экспериментаторов истории, британцем Майклом Фарадеем (1791-1867).


Поле, заполняющее пространство

Сын малообеспеченного человека, Фарадей получал образование самостоятельно, благодаря книгам, которые попадались ему в течение тех семи лет, что он был учеником переплетчика. Его открытия были впечатляющими: он установил различные связи между электричеством и магнетизмом, заложил основы электрохимии, изобрел электродвигатель и динамо... И все это Фарадей сделал, будучи «математически невежественным»: он не использовал уравнений и формул, чтобы описать свои открытия, он излагал их обычным «уличным» языком. Но главным теоретическим достижением Фарадея было создание понятия поля. В то время никто не мог объяснить, почему яблоко падает с дерева или почему Земля вращается вокруг Солнца. Ньютон открыл закон тяготения, но не объяснил, почему он работает. Все это выглядело, как если бы Солнце порождало загадочную силу на планетах, на большом расстоянии и практически мгновенно. Из-за своей абсурдности такое объяснение не нашло общей поддержки. Но закон тяготения работал, и так хорошо, что ученые отложили в долгий ящик теоретические проблемы, которые он поднимал... до того времени, когда Фарадей завел речь о полях.

Мы не отдаем себе в этом отчет, но пространство, которое нас окружает, содержит не только материю. Например, если бы мы освободили комнату от всей находящейся в ней материи до последней пылинки и до последней молекулы воздуха, мы все равно не могли бы утверждать, что в ней совсем ничего нет.


Железные опилки и магниты

То, что мы обычно называем силой (какой бы она ни была, гравитационной, электрической или магнитной), является не чем иным, как действием, которое оказывает поле на помещенное в него тело. Что еще более важно: материя обладает свойствами (мы уже открыли два — массу и заряд), которые делают ее чувствительной к различным полям. Если материя лишена одного из них (например, если электрический заряд равен нулю), соответствующее поле не оказывает на нее никакого действия, как если бы его вовсе не было. Фарадей выявил существование этих полей посредством опыта, который мы часто проводим в школах. Итак, положим железные опилки на листок бумаги и поместим снизу магнит. Опилки начнут перемещаться, образуя характерный узор, соответствующий силовым линиям магнитного поля. Если мы уберем магнит и немного потрясем бумагу, образовавшийся узор исчезнет. Это означает, что магнитное поле, появившееся благодаря магниту, изменяет свойства пространства.


Наука. Величайшие теории. Выпуск 6. Когда фотон встречает электрон. Фейнман. Квантовая электродинамика

Если разместить железные опилки около магнита, они соберутся вокруг него особым образом, демонстрируя наличие магнитного поля в этой области пространства.

Вернуться к просмотру книги Перейти к Оглавлению