В вогнутом же зеркале, когда отражаемый объект лежит между фокусом и центром изгиба, изображение находится за центром изгиба. В таком случае, поскольку изображение находится дальше от зеркала, чем отражаемый объект, изображение крупнее, чем объект. Чем ближе объект находится к фокусу, тем крупнее получается изображение. Разумеется, чем изображение крупнее, тем оно тусклее, поскольку одно и то же количество света распространяется на все большую площадь.
Преломление
Свету не обязательно быть отраженным, чтобы отклоняться от прямолинейного движения. Проходя из одной прозрачной среды в другую, скажем из воздуха в воду, свет, скорее всего, не отразится, а будет продолжать движение, тем не менее направление изменить может.
Несомненно, сначала это было замечено первобытным человеком, когда он обнаружил, что палка, которую положили одним концом в воду, кажется согнутой в том месте, где она входит в воду. Однако, если ее достать, она снова оказывается прямой.
Опять же, можно положить предмет на дно пустой чашки и посмотреть на чашку под таким углом, чтобы предмет был только-только скрыт краем чашки. Если теперь налить в чашку воду, то предмет на дне станет видимым, хотя ни он, ни наблюдающий глаз не переместились. Уже во времена древних греков было понятно — чтобы объяснить это, придется признать, что свет изменил направление при переходе из одной прозрачной среды в другую.
Представьте себе плоский кусок чистого стекла, совершенно прозрачный, и представьте себе луч света, пылающий на него по нормали, то есть падающий на стекло ровно под прямым углом к его плоской поверхности. Если вы приглядитесь, то обнаружите, что свет проходит сквозь стекло, не меняя направления.
Теперь представьте, что свет падает на стекло косо, под углом i к нормали. Можно предположить, что свет будет просто продолжать движение сквозь стекло, оставаясь под тем же углом i к нормали внутри стекла. Однако это не так. Луч света искривляется в точке, где воздух соприкасается со стеклом (на границе воздуха и стекла). Более того, он искривляется по направлению к нормали таким образом, что новый угол, который он образует к нормали внутри стекла (r), меньше, чем угол падения i.
Эта смена направления луча света при переходе от одной прозрачной среды к другой называется преломлением, или рефракцией (что по-латыни значит «перелом»). Угол r является, разумеется, углом преломления.
Если угол падения уменьшается или увеличивается, угол преломления тоже уменьшается или увеличивается. Но каким бы ни было значение i, значение r всегда будет меньше.
Физики древности считали, что угол преломления прямо пропорционален углу падения и, следовательно, удвоение i всегда будет приводить к удвоению r. Это почти так, пока мы говорим о небольших углах, но, если углы становятся больше, этот «закон» обнаруживает свою несостоятельность.
Предположим, например, что свет падает под углом 30° к нормали, попадая на границу стекла с воздухом, а угол преломления, с которым свет попадает в стекло, равен 19,5°. Если угол падения удваивается и становится равным 60°, то угол преломления становится равным 35,3°. Угол преломления возрастает, но не удваивается.
Истинное соотношение между i и r было обнаружено сначала в 1621 году голландским физиком Виллебордом Снеллом (1591–1626). Он не опубликовал свое открытие, и французский философ Рене Декарт (1596–1650) открыл его заново в 1637 году, опубликовав его в той форме, в которой мы сейчас его и знаем (эта форма гораздо более проста, чем форма, которую предлагал Снелл).
Закон преломления Снелла — Декарта утверждает, что, когда свет переходит из одной прозрачной среды в другую, отношение синуса угла падения к синусу угла преломления постоянно
[81]. Синус угла x обычно обозначается как sin x, поэтому закон Снелла — Декарта может быть выражен так:
sin i/sin r = n. (Уравнение 2.8)
Когда луч света наклонно падает из вакуума на прозрачный материал, этот материал имеет постоянную n — коэффициент преломления. Если свет попадает из вакуума на образец газа при 0 °C и давлении в 1 атмосферу (эти условия принято считать стандартной температурой и давлением), то преломление очень слабо.
Это значит, что угол преломления лишь немного меньше угла падения, и соответственно sin r лишь ненамного меньше, чем sin i. Там, где это верно, мы можем видеть из уравнения 2.8, что значение n должно быть лишь немногим больше единицы.
Преломление
Фактически для водорода при стандартных температуре и давлении коэффициент преломления равен 1,00013, а для воздуха — 1,00029. Поэтому есть небольшая разница в определении коэффициента преломления в случаях, когда свет попадает из света в другую прозрачную среду и из вакуума в нее же.
Что касается жидкостей и твердых тел, то здесь ситуация иная. У воды коэффициент преломления равен 1,33, а коэффициент преломления стекла может быть от 1,5 до 2,0 в зависимости от его химического состава. Особенно высок он у алмаза, где составляет 2,42. Луч света, попадающий из воздуха на алмаз под углом 60°, проходит в алмаз под углом преломления всего 21,1°.
Чем больше коэффициент преломления вещества, тем больше его оптическая плотность. Так, алмаз имеет большую оптическую плотность, чем стекло, которое, в свою очередь, имеет большую оптическую плотность, чем вода, которая имеет большую оптическую плотность, чем воздух. Когда луч света попадает из менее оптически плотного вещества в более оптически плотное, луч перегибается по направлению к нормали. Так происходит, когда луч попадает из воздуха в воду или из воды в алмаз, например. Луч света, попадающий из более плотного материала в менее плотный, преломляется по направлению от нормали. Одно воздействие отменяет другое. Так, если свет попадает из воздуха в стекло, падая под углом i, а двигаясь в стекле под углом r, то затем, попадая снова в воздух под углом r, он будет двигаться в воздухе дальше опять под углом i.
Допустим, к примеру, что луч света падает на стекло с углом падения 60°. Угол преломления 35,3°. Пройдя сквозь толщу стекла, луч света достигает поверхности стекла с другой стороны; как правило, обе поверхности стекла параллельны. Поэтому любая линия, являющаяся нормалью к одной поверхности, является нормалью и к другой. С этой поверхности луч попадает со стекла в воздух, преломляясь по направлению от нормали. Поскольку теперь он падает под углом 35,3°, то дальше он движется под углом 60°. Свет, вышедший из стекла, движется теперь в том же направлении, что до встречи со стеклом; эффект преломления, возникший с одной стороны, был отменен на другой, и небольшое изменение положения луча остается незамеченным. (Именно поэтому, глядя в окно из хорошего стекла под любым углом, мы не видим никаких искажений. Предметы, видимые через стекло, находятся именно там, где мы их видим.)