К примеру, тостер или лампа накаливания работают только потому, что сопротивление раскаляет часть цепи (докрасна в тостере и добела — в лампочке). Эффект нагревания не зависит от направления тока, даже если оно меняется туда-сюда.
Таким же образом, вам будет жарко и вы вспотеете независимо от того, пробежали ли вы милю по прямой, по круговой дорожке или взад-вперед по комнате.
Более серьезная проблема с переменным током заключалась в том, что математический анализ его поведения более сложен, чем анализ цепей с постоянным током. Для разработки правильных цепей переменного тока нужно было сначала произвести полный математический анализ. Пока этого не произошло, таким цепям все время приписывалась низкая эффективность.
Полное сопротивление, импеданс
Ситуация, когда сила тока и разность потенциалов постоянно меняются, вызывает важные вопросы — например, как произвести простейшие вычисления касательно переменного тока. Если формула включает I (силу тока) или E (разность потенциалов), то непонятно, какую величину использовать, поскольку переменный ток не имеет постоянного значения ни того ни другого, а имеет только значения, которые постоянно изменяются от нуля до какой-то максимальной величины (Imax и Emax) сначала в одном направлении, потом — в другом.
Можно высчитать эти свойства переменного тока по их производительности — это проще, чем определять их абсолютные числовые значения. Можно увидеть, к примеру, что переменный ток способен иметь ту же производительность (если измерять теплоотдачу или другие факторы), что и постоянный ток с определенными значениями I и E. Соответственно величины I и E представляют собой эффективную силу тока и эффективную разность потенциалов переменного тока. Эффективные величины относятся к максимальным величинам следующим образом:
I = Imax/√2 = 0,7Imax, (Уравнение 13.1)
E = Emax/√2 = 0,7Emax, (Уравнение 13.2)
Можно предположить, что, найдя значения I и E для переменного тока, можно продолжить вычисления и сопротивления, представив его как отношение E/I (сила тока, при заданной разности потенциалов) в соответствии с законом Ома. Однако здесь начинаются сложности. Цепь, которая при постоянном токе имеет низкое сопротивление, при переменном токе будет характеризоваться гораздо большим сопротивлением, поскольку при той же разности потенциалов будет получаться более слабый ток. Очевидно, переменный ток наделяет цепь неким дополнительным фактором сопротивления, отличным от обычного сопротивления вещества, из которого изготовлена цепь.
Чтобы понять, почему это происходит, вернемся к первым экспериментам Фарадея с электромагнитной индукцией (см. гл. 12). Там электрический ток пускался по одной катушке — возникало магнитное поле, расширяющиеся силовые линии пересекали вторую катушку, индуцируя разность потенциалов, соответственно создавался электрический ток во второй катушке. Когда ток в первой катушке выключали, сокращающиеся силовые линии угасающего магнитного поля снова пересекали вторую катушку, провоцируя разность потенциалов с другим знаком, и, таким образом, появлялся ток во второй катушке, идущий в обратном направлении.
Это понятно. Но следует отметить, что, когда ток начинает идти по катушке так, что силовые магнитные линии распространяются наружу, они пересекают не только другие соседние катушки, но и каждый из витков, которые создают магнитное поле. Затем, когда ток в катушке выключается, силовые линии исчезающего магнитного поля пересекают те самые катушки, в которых только что был ток. Поскольку ток начинает и прекращает течь в катушке, индуктированный ток возникает в ней же. Это называется самоиндукцей или индуктивностью, и обнаружил ее Генри в 1832 году. (На этот раз Генри обнародовал свое изобретение, опередив Фарадея, который самостоятельно пришел к тем же выводам; Фарадей, как вы помните, таким же образом предвосхитил Генри в открытии электромагнитной индукции.)
Почти одновременно с Генри и Фарадеем индуктивность изучал и русский физик Генрих Фридрих Эмилий Ленц (1804–1865). Он сделал важное обобщение: индуктированная разность потенциалов, возникающая в цепи, всегда стремится к противодействию создавшей ее силе. Это явление носит название «закон Ленца».
Следовательно, когда при замыкании цепи возникает ток, ожидается, что сила тока немедленно возрастет до предполагаемого уровня. Однако по мере возрастания она создает индуктированную разность потенциалов, которая меняет направление тока на противоположное. Это противодействие индуктивности заставляет первоначальный ток усиливаться в цепи до ожидаемого уровня сравнительно медленно.
Размыкание цепи приводит к прерыванию течения тока, при этом логично, что сила тока сразу упадет до нуля. Вместо этого выключение тока провоцирует индуктированное напряжение, которое заставляет ток продолжать течь. Интенсивность тока падает до нуля сравнительно медленно. Эту противоположную разность потенциалов, произведенную самоиндукцией, часто называют обратным напряжением.
При постоянном токе этот эффект противодействующей индуктивности не настолько важен, поскольку ощущается только при пуске и остановке тока, когда силовые линии двигаются наружу и внутрь. Пока ток постоянно течет в одном направлении, силовые линии не меняются, нет индуктированного тока, нет взаимодействия с первичным током.
Переменный же ток меняется постоянно, и для него это важно, поскольку магнитные силовые линии, все время двигаясь наружу и внутрь, постоянно пересекают катушки. Индуцируемая разность потенциалов здесь присутствует постоянно и постоянно противодействует основной разности потенциалов, сильно уменьшая ее. Так, если некая разность потенциалов создает сильный постоянный ток в определенной цепи, то переменный ток при ней же будет в большой степени нейтрализован индуктивностью и, следовательно, будет в такой же цепи гораздо слабее.
В честь ученого единица индуктивности получила название «генри». Когда сила тока в цепи меняется в пропорции 1 ампер в секунду и в процессе индуцирует противоположную разность потенциалов мощностью 1 вольт, цепь имеет индуктивность в 1 генри. По этому определению 1 генри равен 1 вольту на ампер в секунду или вольт-секунду на ампер (вольт-с/ампер).
Сопротивление тока, произведенное самоиндукцией, зависит не только от значения индуктивности, как таковой, но также и от частоты переменного тока, поскольку с увеличением частоты изменение силы тока за заданное время (ампер в секунду) увеличивается. Соответственно чем больше поворотов делается в секунду, тем большее сопротивление тока создается при одной и той индуктивности.
Представим, что индуктивность обозначается как L, а частота переменного тока как f. Сопротивление, произведенное этими факторами, называется индуктивным сопротивлением и обозначается как XL. Получается, что:
XL = 2πfL. (Уравнение 13.3)
Если L измерять в генри, то есть в вольт-секундах на ампер, а f — в обратных секундах, то размерностью XL должны быть вольт-секунда на ампер в секунду. Секунды сокращаются, и размерность становится просто вольт на ампер, то есть ом (см. гл. 11). Другими словами, единицы измерения индуктивного сопротивления, как и обычного, — омы.