Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - читать онлайн книгу. Автор: Сэм Кин cтр.№ 100

читать книги онлайн бесплатно
 
 

Онлайн книга - Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева | Автор книги - Сэм Кин

Cтраница 100
читать онлайн книги бесплатно

Итак, с проливом разобрались, а что же с «островом стабильности»? Весьма маловероятно, что химикам удастся синтезировать все возможные элементы вплоть до очень крупных магических ядер. С другой стороны, возможно, все же удастся получить элемент № 114, затем № 126 и продолжать путь к «острову» уже оттуда. Некоторые ученые полагают, что при добавлении электронов к сверхтяжелым ядрам стабильность таких атомов может повыситься. Возможно, электроны будут действовать как пружины и амортизаторы, впитывая ту энергию, которую атомы обычно тратят на саморазрушение. Если эта гипотеза подтвердится, возможно, будут синтезированы и элементы после 140-го, 160-го и 180-го номеров. «Остров стабильности» превратится в архипелаг-цепочку. Такие стабильные «острова» будут отстоять все дальше друг от друга. Но, возможно, ученые смогут постепенно преодолевать эти огромные расстояния в новом периодическом архипелаге – как полинезийцы на своих лодках осваивали Океанию.

Самое интересное заключается в том, что эти новые элементы не будут просто утяжеленными аналогами известных сегодня элементов, а могут обладать совершенно новыми свойствами (вспомните, как сильно свинец отличается от кремния и углерода). Согласно некоторым расчетам, если электроны смогут укротить сверхтяжелое ядро и повысить его стабильность, то и ядро сможет управлять электронами. В таком случае электроны, возможно, начнут заполнять оболочки и орбитали атома в необычном порядке. Элемент, который согласно периодическому закону должен проявлять свойства тяжелого металла, может слишком рано заполнить свои орбитали; в таком случае получится элемент типа металлического благородного газа.

Не хотелось бы гневить богов, но ученые уже придумали названия для этих гипотетических элементов. Вероятно, вы заметили, что тяжелые элементы в самом низу таблицы имеют трехбуквенные, а не двухбуквенные обозначения, причем все они начинаются с и. Опять же, все дело во влиянии древнегреческого и латыни. Еще не открытый элемент 119 Uue называется «унунений», сто двадцать второй элемент Ubb – унбибий и т. д. [170] Эти элементы получат «настоящие» названия лишь после того, как их удастся синтезировать, но пока ученые могут просто «пометить» их латинскими словами-формулами – и не только их, но и другие элементы, вызывающие наибольший интерес, например, магическое ядро 184, названное «уноктквадий». (И слава богу! Прямо на наших глазах отмирает привычная двухчастная классификация видов в биологии – та самая, в которой домашняя кошка называется Felis catus. На смену ей приходят хромосомные обозначения ДНК, напоминающие штрихкоды. Прощай, Homo sapiens, человек разумный, здравствуй ТЦАТЦГГТЦАТТГГ… Таким образом, элементы на «у-» остаются одним из последних бастионов латыни в науке – там, где этот язык некогда доминировал [171].)

Итак, как далеко может зайти подобное путешествие с острова на остров? Доведется ли нам наблюдать пики маленьких вулканов, теряющиеся далеко в бесконечности за границами периодической системы, и называть их какими-нибудь протяжными именами вроде э-э-э-э-э…энний, элемент № 999? Увы, нет. Даже если ученые найдут способ склеивания сверхтяжелых элементов и смогут бросить якорь на очень далеких «островках стабильности», то их, образно выражаясь, практически сразу смоет в бушующий атомный океан.

Чтобы понять причину, вернемся к рассказу об Альберте Эйнштейне и к той величайшей ошибке, которую он совершил в своей научной карьере. Несмотря на распространенное мнение поклонников Эйнштейна, он получил Нобелевскую премию по физике отнюдь не за Специальную или Общую теорию относительности. Награда была присуждена Эйнштейну за объяснение странного квантово-механического явления, которое называется фотоэлектрическим эффектом. Он одним из первых доказал, что квантовая механика – не просто неуклюжая система допущений, призванная обосновать непостижимые эксперименты, а самая настоящая реальность, пусть и необычная. Тот факт, что именно Эйнштейн объяснил явление фотоэффекта, можно назвать иронией судьбы сразу по двум причинам. Во-первых, с возрастом Эйнштейн становился все придирчивее и постепенно стал воспринимать квантовую механику с изрядным скептицизмом. Ее статистическая и глубоко вероятностная природа слишком напоминала Эйнштейну азартные игры, именно поэтому он однажды произнес свой знаменитый афоризм «Бог не играет в кости». Эйнштейн был неправ, и как жаль, что большинство людей так и не услышали фразу, которую в ответ произнес Нильс Бор: «Эйнштейн, прекратите указывать Богу, что ему делать».

Во-вторых, Эйнштейн всю жизнь пытался согласовать квантовую механику и теорию относительности в непротиворечивую и стройную «теорию всего», но это ему не удалось. Правда, кое-что получилось. Иногда при столкновении двух теорий они блестяще дополняют друг друга: релятивистские уточнения скорости электрона помогли понять, почему ртуть (мой любимый химический элемент) при комнатной температуре является жидкостью, а не твердым веществом. Нам бы никогда не удалось создать элемент № 99, эйнштейний, если бы мы не знали обеих этих теорий. Но в целом идеи Эйнштейна о силе тяжести, скорости света и относительности не вполне согласуются с квантовой механикой. В некоторых ситуациях, где две эти теории вступают в плотный контакт – например, в черных дырах, – рушатся любые причудливые уравнения.

Возможно, это столкновение теорий и знаменует предел периодической системы. Вновь обратимся к аналогии между электронами и планетами. Как известно, Меркурий совершает оборот вокруг Солнца всего за три земных месяца, а у Нептуна на это уходит 165 земных лет. Так и электроны, расположенные на внутренних атомных оболочках, вращаются вокруг ядра гораздо быстрее, чем электроны внешних оболочек. Точная скорость электрона зависит от отношения количества протонов в ядре к постоянной тонкой структуры альфа, рассмотренной в предыдущей главе. По мере того как это отношение приближается к единице, скорость электрона становится все ближе к скорости света. Но не забывайте, что, по современным расчетам, значение постоянной тонкой структуры составляет около 1/137. Если в атоме элемента будет более 137 протонов, скорость вращения его электронов должна превысить скорость света – а согласно теории относительности Эйнштейна, это невозможно.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию