История лазера - читать онлайн книгу. Автор: Марио Бертолотти cтр.№ 37

читать книги онлайн бесплатно
 
 

Онлайн книга - История лазера | Автор книги - Марио Бертолотти

Cтраница 37
читать онлайн книги бесплатно

Вопреки тому, что можно было бы предположить, гипотеза Эйнштейна не была «развитием» теории черного тела Планка. Эйнштейн знал работу Планка, но не разделял полностью аргументацию. В 1905 г. он не использовал теорию Планка, не использовал его формулу и не ссылался на его гипотезу. Он следовал другим путем и даже не использовал букву h в выражении для энергии кванта света — т.е. произведение постоянной Планка на частоту, но использовал комбинацию констант, в которых появлялись константа закона идеальных газов, число Авагадро и константа, которая уже имеется в законе распределения излучения черного тела, даваемого формулой Вина.

Все это, однако, не означает то, что идеи Планка отвергались, и то, что кванты света были изобретены без предшествующих дискуссий об «элементах энергии», а просто то, что световые кванты не являются прямым выводом или обобщением элементов энергии. Точно также гипотеза световых квантов отнюдь не мотивировалась необходимостью объяснить фотоэффект, который в 1905 г. не рассматривался как проблема. Вместо этого Эйнштейн искал ответ на общую проблему, которая, как мы видели, так же была выдвинута Рэлеем, и найти причину очевидной невозможности совместить излучение черного тела с теорией Максвелла. Чтобы подтвердить соображения, к которым пришел, он и использовал определенные экспериментальные факты, включая результаты экспериментов по фотоэлектрическому эффекту.

Объяснение фотоэлектрического эффекта на основе понятия фотонов потребовало много лет до полного принятия. Наилучшее подтверждение теории Эйнштейна пришло из измерений, которые произвел американский физик Роберт Эндрю Милликен (1868—1953) в период 1916—1926 гг.

Милликен родился в Моррисоне (Иллинойс, США) и получил докторскую степень по физике в Колумбийском университете. Затем в 1896 г. он отправился в Европу, где посетил университеты Берлина, Гёттингена и Парижа. Он встретился с Максом Планком, Вальтером Нернстом и Анри Пуанкаре. В 1896 г. он был ассистентом Альберта А. Майкельсона в университете Чикаго, где и стал профессором в 1910 г. В 1921 г. он перешел в Калифорнийский технологический институт. В 1923 г. он получил Нобелевскую премию по физике «за его прецизионные измерения заряда электрона и постоянной Планка».

Милликен, который первоначально не верил в теорию Эйнштейна, дал лучшие проверки ее достоверности и получил Нобелевскую премию по физике также за эти результаты. Окончательное доказательство пришло позднее, когда американский физик Артур Комптон (1892—1962) обнаружил в 1922 г., что рентгеновские лучи рассеиваются свободными электронами так, как если бы они были частицами с энергией hf (f — частота излучения) и с импульсом hf/c, как и предсказывал Эйнштейн. В частности, рассеянный квант имеет частоту, отличную от частоты падающего излучения, и эта частота изменяется с углом, под которым он рассеивается (эффект Комптона, за который он получил Нобелевскую премию в 1927 г.). Это факты, которые невозможно объяснить в рамках волновой теории. Но в то время гипотеза Эйнштейна световых квантов уже была полностью признана.

Но в самом начале научный мир того времени не верил в теорию фотоэлектрического эффекта Эйнштейна. В 1913 г. в письме, в котором предлагалось избрать Эйнштейна членом Прусской академии и присудить профессорскую степень и в котором превозносились его работы и его способности, Макс Планк писал: «То, что он иногда не достигает цели в своих спекуляциях, как, например, в своей гипотезе световых квантов, не может использовано против него».

Несколькими годами позднее, в 1916 г., Милликен, описывая свои экспериментальные подтверждения уравнения Эйнштейна для фотоэлектрического эффекта, писал о той же гипотезе: «Я не пытался представить основу для предположения, которое в то время было почти ничто».

Наконец, Эйнштейн получил Нобелевскую премию в 1921 г. не за свою теорию относительности, а как раз за свою теорию фотоэлектрического эффекта.

В 1906 г. Эйнштейн в своей работе, озаглавленной Theorie der Lichterzeugung und Lichtabsorption (о теории испускания и поглощения света), глубоко вникнул в способ, каким Планк вывел закон черного тела, и пришел к выводу:

«Поэтому мы должны рассмотреть следующий закон на основе квантовой теории Планка. Энергия элементарного резонатора (осциллятора) может принимать только величины, которые кратны целым числам (от энергии кванта света); энергия резонатора изменяется скачками путем поглощения или испускания в целых числах [от той же самой величины]».

Этими словами Эйнштейн обострил внимание на том, что он рассматривал главным в теории излучения Планка, а именно, факт, что резонаторы в полости изменяют свою энергию только конечными величинами, т.е. не непрерывно, а скачками. Двумя годами позднее Лоренц пришел к такому же заключению, что Планк ввел совершенно новую гипотезу, которая противоречит обычным законам электродинамики.

В 1909 г., четыре года после его работы по фотоэлектрическому эффекту, Эйнштейн опубликовал работу, в которой он продемонстрировал, что закон излучения Планка означает, что излучение проявляет комбинированную волновую и корпускулярную природу. Этот результат был первым ясным указанием на т.н. волново-частичный [2] дуализм, который позднее будет широко обсуждаться в квантовой механике.

В ретроспективе интересно отметить, что в споре XVII в., о волновой или корпускулярной природе света между двумя гигантами (Ньютон и Гюйгенс) оба оппонента подходили каждый своим путем к двусторонней проблеме.


Индуцированное излучение

Квантовая теория получила полное признание на первом Сольвеевском конгрессе, состоявшемся в 1911 г. при финансовой поддержке бельгийского ученого Эрнеста Сольве (1883—1922), который разработал промышленный способ производства соды. Этот конгресс был организован Вальтером Нернстом в 1911 г. с целью спровоцировать открытую дискуссию о «кризисе», вызванном введением в физику квантовых идей. Оставляя развитие квантовой теории, мы теперь вернемся к исследованиям света Эйнштейном.

Эйнштейн был сильно увлечен проблемой природы света, и в 1915— 1916 гг. опубликовал работу Strahlung-Emission und Absorption nach der Quantentheorie, которая является фундаментальной и кардинальной в нашей истории. Он продолжал размышлять над теорией черного тела Планка и искусственным в некотором смысле способе, каким он решил проблему, введя концепцию квантования энергии. Затем, в 1916 г., он опубликовал новое, крайне простое и изящное доказательство закона Планка и в то же самое время получил важные результаты, касающиеся испускания и поглощения света атомами и молекулами. В этой работе впервые была введена концепция индуцированного излучения, которая является фундаментальной для лазерного эффекта. Он мастерски объединил «классические законы» с новыми концепциями квантовой механики, которая в то время развивалась под руководством Бора.

Эйнштейн рассматривал молекулы, заключенные в сосуде. Согласно постулатам Бора, разработанным к тому времени, каждая молекула может иметь лишь дискретный набор состояний с определенными энергиями. Если большое число таких молекул составляют газ при некоторой температуре, то вероятность одной молекулы находиться в определенном состоянии можно установить, применяя законы статистической механики, установленные Гиббсом, Максвеллом и Больцманом. Эйнштейн предположил, что молекулы обмениваются энергией с излучением, которое присутствует в объеме за счет трех процессов.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию