Сразу после того, как Эйнштейн выдвинул общую теорию относительности, Джозеф Лензе и Ханс Тирринг из Венского университета заметили, что если взять достаточно массивное тело, скажем, черную дыру, и привести это тело во вращение, то пространство вокруг черной дыры тоже потянется за ней. Иначе говоря, если вы попытаетесь стоять на месте, покажется, будто вы вращаетесь. И это не просто догадка. С тех пор было запущено множество спутников, которые зарегистрировали вращение пространства, вызванное вращением Земли и Марса.
Мы хотим сказать, что на крупных масштабах получается, будто именно материя и «создает» пространство, даже если локальное пространство выглядит так, будто в нем ничего и нет.
IV. Насколько пусто пространство?
На последних нескольких страницах нас увело в сторону эзотерики – мы слишком много рассуждали о природе пространства и обо всем таком прочем, а теперь пора перейти к более конкретным разговорам. Так вот, давайте договоримся: если вы согласитесь, что галактики во Вселенной в общем и целом никуда не движутся, а Вселенная вокруг них расширяется, мы согласимся, что можно иногда предаваться невинным фантазиям, что мы-де находимся в центре Вселенной. Для подтверждения согласия как следует встряхните эту книжку.
Мы сочтем, что вы тем самым сказали «да».
И даже можем проделать кое-какие корректные физические выкладки на основе «центропупистской» модели. Начнем с основного вопроса – замедляется расширение Вселенной или ускоряется? Посмотрите на это с точки зрения Вселенной и постарайтесь проделать следующий эксперимент.
1. Выйдите на улицу с футбольным мячом.
2. Бросьте его вертикально вверх.
3. Быстренько отойдите в сторонку.
Сколько бы вы ни повторяли эксперимент, происходит одно и то же – что взлетает вверх, то падает вниз.
Разумеется, причиной того, что мы сумели построить ракеты, которые летают на Марс, стало следующее: если запустить мячик или ракету достаточно быстро, они вырвутся из гравитационного поля Земли. Скорость, с которой можно улететь с Земли, составляет примерно 40 тысяч километров в час – это называется «вторая космическая скорость». Ракеты взлетают в космос, поскольку двигаются быстрее.
А на Луне вторая космическая скорость составляет чуть больше 8000 километров в час. То есть если бы вы стояли на Луне и запустили сверхскоростной мячик со скоростью 16 тысяч километров в час, то обнаружили бы, что он вышел в открытый космос. А если бросить мяч с той же скоростью с Земли, то он в конце концов с размаху шлепнется обратно. Еще один пример для наглядности: вторая космическая скорость у Деймоса – спутника Марса – около 21 километра в час. Даже мы могли бы запустить мяч с Деймоса в открытый космос! Ну, наверное.
Так чем же Деймос так отличается от Земли? Массой. У Земли масса гораздо больше, а значит, больше и гравитация. Чем меньше масса, тем меньше сила гравитации, которая притягивает мяч обратно к планете (планетоиду, спутнику и т. п.), вот почему вторая космическая скорость у Деймоса такая маленькая. Для массивных предметов вроде галактик это тоже справедливо.
Если бы Вселенная была совершенно пуста (а это, к счастью для нас, совсем не так), то она бы расширялась вечно с абсолютно неограниченной скоростью. Не было бы материи, которая бы ее затормозила. Если бы у нас была настолько пустая вселенная, а мы поместили бы в нее немного вещества, то расширение бы немного замедлилось. Не забывайте: материя влияет на пространство, так что если бы мы поместили в эту вселенную целую кучу вещества, то она бы впоследствии схлопнулась.
Линия, отделяющая вселенную, которой суждено расширяться бесконечно, от вселенной, которой суждено схлопнуться, называется критической плотностью вселенной, и она гораздо ниже, чем вы думаете.
Обычно представление о том, насколько плотно космос набит материей, сильно преувеличено, поэтому, вероятно, нужно устроить проверку реальностью, и начнем мы с того, что происходит у нас по соседству. Вспомните сцену из «Звездных войн», когда Хан Соло на «Тысячелетнем Соколе» пробивается сквозь пояс астероидов. Тогда звездолет едва не развалился. Как вам, наверное, известно, у нашей Солнечной системы тоже есть пояс астероидов – между орбитами Марса и Юпитера (соответственно четвертой и пятой планетами, считая от Солнца). Что же произойдет, если вы преисполнитесь неблагоразумной отваги и рванете на своем звездолете к Юпитеру?
Ничего особенного.
Хотя астрономы не уверены, сколько в точности там астероидов, разумная оценка – 10 миллионов – показывает, что среднее расстояние между этими каменюками – больше полутора миллионов километров. Если вы не представляете себе, сколько это, поясним: полтора миллиона километров – это примерно в четыре раза больше, чем до Луны, а настолько далеко забирались пока едва ли пара десятков человек.
Если мы покинем Солнечную систему и двинемся к другим звездам, окажется, что от ближайшей звезды Проксима Центавра нас отделяет расстояние в четыре световых года, а по пути все довольно пусто. В среднем каждый кубический сантиметр (средний размер игрального кубика) межзвездного пространства содержит всего один атом водорода. Для сравнения – это примерно в 10 раз менее плотно, чем земной воздух, и примерно в миллион раз менее плотно, чем самый-самый чистый искусственный вакуум, которого мы способны добиться в лаборатории.
Пространство между галактиками, даже если бы Вселенная обладала критической плотностью, еще в миллион раз менее плотно. Это значит, что на каждый кубометр пространства (это примерно объем вашего холодильника) приходится всего пять атомов водорода.
Вы, конечно, подозревали, что в космическом пространстве пусто. Потому-то оно и называется пространством. В некотором смысле.
Поскольку астрофизики не любят, когда у них в распоряжении остается так мало атомов, нас интересует, в сущности, только то, обладает Вселенная плотностью меньше критической или больше, поэтому мы определяем соотношение. Это соотношение сравнивает количество материи (любой материи) во Вселенной с количеством материи, которое мы ожидали бы при критической плотности. Это соотношение мы называем:
ΩМ.
Если вы хотите рассказать маме, чему вас научила эта книга
[100], а картинку по телефону не покажешь или просто бумажки под рукой нет, имейте в виду, что это называется «омега материи».
А сейчас мы испортим весь сюрприз и скажем, что по самым точным оценкам ΩМ составляет 28 % (плюс-минус крохотулечная погрешность) материи – именно такая доля вещества во Вселенной заставит ее схлопнуться. По мере расширения Вселенной материя в ней становится все более диффузной, так что с течением времени Вселенная будет казаться все более пустой. А значит, плотность Вселенной будет уменьшаться (пространства становится больше, а новой материи не вырабатывается), поэтому соотношение тоже будет уменьшаться.