Объясняя мир. Истоки современной науки - читать онлайн книгу. Автор: Стивен Вайнберг cтр.№ 77

читать книги онлайн бесплатно
 
 

Онлайн книга - Объясняя мир. Истоки современной науки | Автор книги - Стивен Вайнберг

Cтраница 77
читать онлайн книги бесплатно

15. Эпилог. Великое упрощение

Великие открытия Ньютона оставили массу загадок. Природа материи, свойства других сил, которые вместе с силой притяжения воздействуют на материю, удивительные свойства живой природы все еще были окутаны тайной. В эпоху после Ньютона удалось добиться огромного прогресса {283}, для описания которого мало будет одной книги, не говоря уж о главе. Цель этого эпилога – подчеркнуть только одну мысль: с прогрессом, достигнутым в науке после Ньютона, начала вырисовываться примечательная картина – выяснилось, что мир управляется законами природы, гораздо более простыми и унифицированными, чем это можно было представить во времена Ньютона.

Сам Ньютон в Книге III «Оптики» упоминает теорию материи, которая могла бы по крайней мере сосредоточить в себе и оптику, и химию.

«Мельчайшие частицы материи могут сцепляться посредством сильнейших притяжений, составляя большие частицы, но более слабые; многие из них могут также сцепляться и составлять еще большие частицы с еще более слабой силой – и так в ряде последовательностей, пока прогрессия не закончится самыми большими частицами, от которых зависят химические действия и цвета природных тел; при сцеплении таких частиц составляются тела заметной величины» {284}.

Также он обращает внимание на силы, действующие в этих частицах:

«Ибо мы должны изучить по явлениям природы, какие тела притягиваются и каковы законы и свойства притяжения, прежде чем исследовать причину, благодаря которой притяжение происходит. Притяжения тяготения, магнетизма и электричества простираются на весьма заметные расстояния и таким образом наблюдались просто глазами, но могут существовать и другие притяжения, простирающиеся на столь малые расстояния, которые до сих пор ускользают от наблюдения…» {285}

По этому замечанию видно, что Ньютон вполне осознавал, что в природе помимо тяготения существуют другие силы. О статическом электричестве знали уже давно. Платон упоминает в «Тимее», что если потереть кусок янтаря (по др. – гр. ἤλεκτρον – электрон), то он приобретает способность притягивать легкие предметы. Магнетизм был известен благодаря особенностям магнитного железняка естественного происхождения, который китайцы использовали для геомантии [24]. Их детально изучил придворный врач королевы Елизаветы Уильям Гилберт. Ньютон в своей книге оставляет подсказки, говорящие о существовании сил, о которых еще не было известно из-за их ничтожной величины. Это было предвосхищение слабых и сильных атомных взаимодействий, открытых в XX в.

В начале XIX в. изобретение Алессандро Вольтой электрической батареи позволило провести детальные количественные эксперименты с электричеством и магнетизмом, и вскоре стало известно, что между этими явлениями существует связь. Сначала в 1820 г. в Копенгагене Ханс Христиан Эрстед выяснил, что магнит и провод, по которому идет электрический ток, воздействуют друг на друга. Услышав об этом, Андре Мари Ампер в Париже открыл, что провода, через которые пропускают электрический ток, также воздействуют друг на друга. Ампер догадался, что два этих разных явления схожи между собой: силы, действующие внутри и снаружи кусочков намагниченного железа, зависят от электрических токов, циркулирующих в них.

Как это уже случилось с гравитацией, понятие действующих сил магнетизма и электричества было заменено идеей поля, в данном случае магнитного поля. Каждый магнит и каждый находящийся под током провод вносит вклад в полное магнитное поле в любой точке в своих окрестностях, и магнитное поле действует своей силой на любой магнит или источник электричества в этой точке. Майкл Фарадей связал магнитные силы, производимые электрическим током, с линиями магнитного поля, окружающего провод. Также он описал электрические силы, появляющиеся, если потереть кусочек янтаря, как связанные с электрическим полем, которое можно изобразить как линии, радиально распространяющиеся от заряженного электричеством янтаря. Что еще важнее, в 1830-х гг. Фарадей показал связь между электрическим и магнитным полями: переменное магнитное поле, например, производимое вращающейся катушкой из провода, по которой проходит ток, генерирует электрическое поле, которое может вызывать электрический ток в другом проводе. Именно это явление используется для получения электричества на современных электростанциях.

Окончательно объединил электричество и магнетизм несколько десятилетий спустя Джеймс Клерк Максвелл. Он считал электрическое и магнитное поля напряжением, распространенным в среде, эфире, и выразил все, что было известно об электричестве и магнетизме, в уравнениях, связывающих поля и интенсивность их взаимодействий. Новой идеей Максвелла была мысль о том, что как при изменении магнитного поля возникает электрическое поле, так и при изменении электрического поля возникает магнитное. Как часто случается в физике, термины понятийной основы уравнений Максвелла, такие как эфир, до наших дней не дошли, но уравнения остались. Их можно увидеть даже на футболках, которые носят студенты-физики {286}.

Теория Максвелла дала впечатляющие результаты. Поскольку колеблющееся электрическое поле производит колеблющееся магнитное поле, а колеблющееся магнитное поле – колеблющееся электрическое, в эфире, или, как бы мы сказали сегодня, в пустоте возможно существование самоподдерживающихся колебаний и электрического, и магнитного полей. Примерно в 1862 г. Максвелл выяснил, что это электромагнитное колебание распространяется, согласно его уравнениям, со скоростью, имеющей примерно то же самое численное значение, что и измеренная скорость света. Для Максвелла было вполне естественно прийти к заключению о том, что свет – это не что иное, как взаимное самоподдерживающееся колебание магнитного и электрического полей. Видимый свет имеет частоту очень далекую от той, которую имеет ток в обычной электрической розетке, но в 1880-х гг. Генрих Герц сумел создать волны, соответствующие уравнениям Максвелла, – радиоволны, которые отличаются от видимого света гораздо более низкой частотой. Таким образом, электричество и магнетизм объединились не только друг с другом, но и с оптикой.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию