Объясняя мир. Истоки современной науки - читать онлайн книгу. Автор: Стивен Вайнберг cтр.№ 63

читать книги онлайн бесплатно
 
 

Онлайн книга - Объясняя мир. Истоки современной науки | Автор книги - Стивен Вайнберг

Cтраница 63
читать онлайн книги бесплатно

Вначале Декарт провел эксперимент, используя стеклянный сосуд сферической формы с тонкими стенками, наполненный водой, в качестве модели капли дождя. Он заметил, что, когда лучи света проходят сквозь шар в разных направлениях, свет, который выходит обратно под углом примерно 42° к углу падения, становится «полностью красным и несравнимо более ярким, чем остальные лучи». Он пришел к заключению, что радуга (или, по крайней мере, ее красный цвет) образует в небе арку, когда угол между направлением на радугу и направлением от нее на солнце равен примерно 42°. Декарт предположил, что лучи света преломляются, попадая в каплю воды, отражаются от ее внутренней поверхности и затем снова преломляются, когда попадают из капли в воздух. Но как объяснить свойство радуги посылать лучи из капель именно под углом в 42° к направлению их падения?

Чтобы ответить на этот вопрос, Декарт предполагает, что лучи света попадают в сферическую каплю по десяти различным параллельным направлениям. Он присвоил каждому из этих лучей то, что сегодня называют прицельным параметром b – величина кратчайшего расстояния до центра капли, на котором луч прошел бы, если бы проходил сквозь каплю прямо, не преломляясь. Первый луч был выбран так, что если бы он не преломлялся, то прошел бы на расстоянии от центра капли, равном 10 % радиуса R капли (то есть b = 0,1R). При этом десятый луч был выбран так, чтобы задеть поверхность капли по касательной (b = R). Все остальные лучи были равномерно распределены между ними. Декарт описал путь каждого луча, как он преломился, войдя внутрь капли, отразился от ее внутренней поверхности и снова преломился, покидая каплю, используя закон равенства углов отражения Евклида и Герона и свой собственный закон преломления, приняв показатель преломления воды n за 4/3. В таблице приводятся значения, полученные Декартом для угла φ между выходящим из капли лучом и направлением его падения для каждого луча, и результаты моих собственных расчетов, при которых я использовал тот же самый показатель преломления:


Объясняя мир. Истоки современной науки

Неточность некоторых результатов Декарта может быть связана с ограниченностью математических средств в то время. Я не знаю, была ли у него возможность пользоваться таблицей синусов, но у него точно не было ничего, хотя бы отдаленно напоминающего современный микрокалькулятор. Тем не менее эти результаты выглядели бы лучше, если бы Декарт округлил их до ближайшего целого градуса, а не до 10 минут угла.

Как заметил Декарт, угол φ близок к 40° для достаточно широкого диапазона прицельных расстояний b. Далее он повторил расчеты для восемнадцати еще более близко расположенных лучей, значения b для которых отличались от 80 до 100 % радиуса капли, при этом угол φ был равен примерно 40°. Декарт выяснил, что для четырнадцати из этих восемнадцати лучей угол φ находился в промежутке от 40° до максимальной величины 41° 30´. Таким образом, эти теоретические расчеты подтвердили его экспериментальные данные, упомянутые ранее, где угол наиболее яркого луча был округленно равен 42°.

В техническом замечании 29 приводится современный вариант расчетов Декарта. Вместо того чтобы высчитывать численное значение угла φ между входящим и исходящим лучом для каждого луча в совокупности лучей, как делал Декарт, выводится простая формула, по которой рассчитывается φ для любого угла, при любом прицельном расстоянии b и при любом значении n отношения между скоростью света в воздухе и скоростью света в воде. Затем эта формула используется для определения значения φ, при котором выходящие из капли лучи наиболее интенсивны {241}. Для n, равного 4/3, оптимальное значение φ оказывается 42°, при котором преломленный свет собирается, как это и определил Декарт. Декарт даже рассчитал соответствующий угол для вторичной радуги, которая производится светом, дважды отражающимся внутри капли до того, как покидает ее.

Декарт видел связь между разделением цветов, характерным для радуги, и цветами, получающимися при преломлении света через призму, но он не смог рассчитать количественные показатели этого явления, потому что не знал, что белый солнечный свет состоит из всех цветов и что показатель преломления света немного меняется в зависимости от его цвета. В действительности, тогда как Декарт брал показатель преломления для воды, равный 4/3 = 1,3333…, на самом деле для типичной длины волны красного цвета он равен скорее 1,330, а для синего – 1,343. Используя общую формулу, описанную в замечании 29, можно найти максимальное значение для угла φ между углом падения и преломления, которое будет равно 42,8° для красного цвета и 40,7° для синего. Именно поэтому Декарт и видел ярко-красный цвет, когда смотрел на сосуд с водой под углом в 42° к направлению солнечных лучей. Это значение угла φ немного выше максимального значения 40,7° для синего цвета, поэтому Декарт не мог увидеть лучей из синей части спектра, но немного ниже максимального значения φ 42,8° для красного цвета, поэтому и мог получиться достаточно яркий оттенок красного.

Работа Декарта по оптике приближается к методу современной физики. Декарт сделал ни на чем не основанное предположение о том, что свет преодолевает границу между двумя средами так же, как теннисный мячик, прорывающий тонкий экран, и использовал его, чтобы вывести соотношение между углами падения и преломления, которое (при правильном выборе показателя преломления n) согласуется с наблюдениями. Далее, используя сосуд, наполненный водой, в качестве модели капли дождя, Декарт провел наблюдения, подтвердившие возможное происхождение радуги. Затем он показал математически, что эти наблюдения следуют из его закона преломления. Он не понимал, почему у радуги возникают разные цвета, поэтому обошел этот вопрос и опубликовал то, что понимал. Это как раз то самое, что делают физики сегодня. Но если отвлечься от приложения математических расчетов к физической задаче, то какое отношение это исследование имеет к «Рассуждению о методе» Декарта? Я не вижу, чтобы он выполнял свои собственные предписания «четко следовать пути рассуждений и искать истину в науке».

Я должен добавить, что в «Первоначалах философии» Декарт предлагал значительное качественное улучшение понятия «импетус Буридана» {242}. Он доказывал, что «любое движение само по себе происходит вдоль прямых линий», поэтому (в противовес и Аристотелю, и Галилею) требуется сила, которая заставляет небесные тела двигаться по искривленным орбитам. Но Декарт не сделал никакой попытки рассчитать эту силу. Как мы увидим в главе 14, Гюйгенсу удалось найти формулу для силы, которая требуется, чтобы тело двигалось с заданной скоростью по кругу заданного радиуса, а Ньютон объяснил, что эта сила является силой тяготения.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию