Красота физики. Постигая устройство природы - читать онлайн книгу. Автор: Фрэнк Вильчек cтр.№ 97

читать книги онлайн бесплатно
 
 

Онлайн книга - Красота физики. Постигая устройство природы | Автор книги - Фрэнк Вильчек

Cтраница 97
читать онлайн книги бесплатно

Примеры: cохранение энергии, сохранение импульса, сохранение момента импульса и сохранение электрического заряда – это законы сохранения; энергия, импульс, момент импульса и электрический заряд – это сохраняющиеся величины.

Фраза «сохранение энергии» заслуживает особого внимания, поскольку ее использование в науке отличается от общепринятого. Нам часто советуют сохранять – беречь – энергию, например, выключая электрический свет ночью, или снижая температуру на наших обогревателях, или гуляя пешком вместо того, чтобы использовать машину. Но действительно ли миру нужна наша помощь, чтобы его основные законы соблюдались? Смысл в том, что, когда нас побуждают сохранять энергию, на самом деле нас просят удерживать энергию в таких формах, которые могут быть использованы позже для выполнения полезной работы, и не позволять ей переходить в бесполезные (тепло) или вредные (химические реакции, в которых выделяются токсины) формы. Понятие свободной энергии в термодинамике отражает некоторые из этих различий. Свободная энергия, которая является обобщенно-полезным видом энергии, не сохраняется. Она имеет тенденцию уменьшаться, или, как часто говорят, рассеиваться, со временем.

Закон Фарадея

Faraday's law

Этот закон утверждает, что циркуляция электрического поля по замкнутому контуру равна скорости изменения потока магнитного поля через любую поверхность, натянутую на этот контур, взятой со знаком минус. Закон Фарадея увековечен в одном из уравнений Максвелла.

Измерение и размерность

Dimension

Интуитивно, измерение – это возможное направление движения. Так, мы говорим, что прямая или кривая имеет одно измерение. Плоскость или поверхность имеет два измерения, поскольку требует движения в двух независимых направлениях – например, мы можем назвать их «горизонтальное» и «вертикальное», или «север-юг» и «запад-восток», – чтобы достичь любой точки из любой другой. Обычное пространство, в котором мы живем, или твердое тело имеет три измерения.

Более гибкое понятие «пространства» и измерения возникает естественным образом при введении координат. Здесь вам следует обратиться к статье о координатах, где обсуждается это понятие. Размерность [101] пространства, в котором введены координаты, равна необходимому для него числу координат. Это понятие в приложении к простым, гладким геометрическим объектам согласуется с предыдущей интуитивной идеей.

Математики обобщили эти более или менее интуитивные понятия измерений многими способами. Два примечательных обобщения – это комплексные измерения и дробные, или фрактальные, размерности. Комплексные измерения добавляют больше координат, но таких координат, которые являются комплексными числами. Дробные размерности могут возникнуть при рассмотрении объектов, содержащих очень богатую локальную структуру и очень далеких от понятия гладкости (см. Фракталы). В последние годы в связи с суперсимметрией физики ввели понятие квантовых измерений. Координаты квантовых измерений являются грассмановыми числами.

Есть и еще одно, совершенно отличное использование слова «размерность» в науке. В этом употреблении мы говорим о единицах, в которых измеряется какая-либо величина, как о ее размерности. В этом смысле площадь имеет размерность длины в квадрате, тогда как у скорости размерность длины, поделенной на время, у силы – размерность массы, умноженной на длину и поделенной на квадрат времени, и т. д. Чтобы не допустить возможной путаницы, я избегал использования слова «размерность» в этом смысле.

Изотоп

Isotope

Ядра с одинаковым числом протонов, но с различным числом нейтронов называются изотопами. Ядра, которые являются изотопами, имеют одну и ту же величину электрического заряда, что приводит к практически одинаковому химическому поведению, хотя они значительно отличаются по массе.

Импульс

Momentum

Импульс вместе с энергией и моментом импульса является одной из выдающихся сохраняющихся величин классической физики. Каждая из них также развилась в основополагающий столп современной физики.

Импульс тела является мерой его количества движения. Количественно он равен массе тела, умноженной на его скорость. (Это нерелятивистская версия, верная для небольших скоростей. Специальная теория относительности приводит к родственной, но более сложной формуле.)

У импульса есть направление, так же как и величина. Таким образом, это векторная величина.

Импульс системы тел равен сумме импульсов тел по отдельности.

Импульс сохраняется в самых разнообразных обстоятельствах. Этот результат лучше всего понятен в рамках общей теоремы Нётер, которая связывает законы сохранения с симметрией. В этой парадигме сохранение импульса отражает симметрию (инвариантность) физических законов относительно трансляции (сдвига) в пространстве – т. е. относительно преобразований, которые перемещают все в рассматриваемой системе на одинаковое расстояние. Другими словами, мы имеем сохранение импульса, если законы, управляющие нашей системой, не зависят ни от какого внешне заданного, фиксированного положения в пространстве.

В квантовом мире импульс остается правомерным понятием и приобретает дополнительные, очень изысканные и красивые свойства.

Инвариантность

Invariance

Мы называем что-то инвариантным относительно некоторого преобразования, если такое преобразование не изменяет его.

Примеры:

• Расстояние между объектами инвариантно, если вы перемещаете все объекты в одном и том же направлении на одинаковое расстояние (инвариантность расстояния относительно трансляции в пространстве).

• Форма круга является инвариантной, если вы поворачиваете его вокруг его центра (инвариантность круга относительно вращения).

• Скорость, с которой распространяется луч света, является инвариантной, если вы движетесь с любой постоянной скоростью. Таким образом, мы говорим, что скорость света является инвариантной относительно преобразований Галилея или, что эквивалентно, относительно бустов, которые преобразуют координаты между системами отсчета, связанными с платформами, движущимися с различными скоростями.

Третий из этих примеров описывает ключевое положение специальной теории относительности Эйнштейна.

Интенсивность (света)

Intensity of light

Интенсивность света – точное понятие, которое соответствует воспринимаемой степени яркости. Интенсивность луча света, падающего на поверхность, – это количество энергии, которую луч доставляет на эту поверхность, в единицу времени и на единичную площадь [102]. Это определение позволяет нам обобщить понятие интенсивности на все части электромагнитного спектра, такие как радиоволны, инфракрасное излучение, ультрафиолетовое излучение и рентгеновские лучи.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию