Основы геоэкологии - читать онлайн книгу. Автор: Геннадий Голубев cтр.№ 39

читать книги онлайн бесплатно
 
 

Онлайн книга - Основы геоэкологии | Автор книги - Геннадий Голубев

Cтраница 39
читать онлайн книги бесплатно

Рис. 11 четко иллюстрирует рост среднегодового содержания сульфатов в атмосферных осадках Европы.

По состоянию на начало 1990 гг., вклад России в глобальную эмиссию диоксида серы составляет 12 %, оксидов азота – 6 %. Вклад США составляет соответственно 21 % и 20 %. Суммарное поступление оксидов азота на единицу площади США в 11 раз больше, чем в России, а диоксида серы – в три раза. Эти цифры не говорят о хорошей экологической ситуации в России, они лишь указывают на то, что экологическая нагрузка по кислотным выпадениям в США относительно выше, чем в нашей стране.

На территории России фоновое загрязнение оксидами серы и азота отмечается практически повсеместно, в особенности в Европейской части России. До начала экономической депрессии средняя за год величина выпадения серы на Европейской части России составляла 1 т/км2, азота – 0,6 т/км2. При этом около 20 % приносилось из Европы через западную границу СССР. Вследствие экономической депрессии, к 1993 г. выпадения серы на территории России сократились на 27 %, азота – на 11 %. Однако сохранились значительные территории с повышенным уровнем кислотности осадков (запад и центр Европейской части России, Урал, Кольский полуостров, Кузбасс и др.).


Основы геоэкологии

Рис. 11. Увеличение содержания сульфатов в атмосферных осадках, выпадающих над Западной и Центральной Европой в мг серы/л


Внутри этих территорий имеются значительные площади, где выпадает более 3 т серы (до 5 т) и 1 т азота на 1 км2 в год. В России весьма велика эмиссия пылевых частиц, играющих роль ядер конденсации при образовании сульфатных аэрозолей, то есть, по сути дела, серной кислоты.

Так же как изменение климата тесно взаимосвязано с антропогенными воздействиями на глобальный биогеохимический цикл углерода, так кислотные осадки и асидификация – это проявление антропогенных изменений глобальных биогеохимических циклов азота и серы.

Вероятно, азотный цикл изменен человеком в наибольшей степени по сравнению с другими циклами. Деятельность человека включает в глобальный цикл азота около 140 тераграмм (млрд тонн) азота в год. Это больше, чем суммарное поступление из естественных источников. При этом 80 тг возникает в виде производимых промышленностью азотных удобрений, 40 тг образуется вследствие посевов бобовых и риса и 20 тг – вследствие сжигания горючих ископаемых в процессе производства энергии. Из этого количества приблизительно 80 тг выбрасывается в атмосферу. Из поступающих в атмосферу 80 тг N/год на континенты выпадает около 60 тг N/год и около 20 тг N/год отлагается на поверхность океанов. Побережья морей получают со стоком рек еще 40 тг N/год.

Таким образом, из 140 тг N/год формирующегося атмосферного азота океаны получают около 60 тг N/год. Более высокое содержание азота отмечается в прибрежных зонах морей умеренного пояса, что приводит к развитию микроскопических водорослей, с возникающим иногда бурным их цветением, за которым следует разложение водорослей с иногда полным поглощением из воды растворенного кислорода. К этому явлению, называемому эвтрофикация, мы еще вернемся в главе, посвященной гидросфере.

Подавляющая часть остающихся 80 тг N/год аккумулируется на континентах, заметно влияя на процессы на суше. Например, леса во многих частях мира получают фактически дополнительное количество азотных удобрений, с неизвестными пока последствиями, в частности, на накопление или расходование биомассы (то есть углерода). Наряду с этим, азотные соединения на суше распадаются в процессе денитрификации, и образующийся газ (N2) попадает снова в атмосферу. Относительно точные величины и соотношения антропогенной аккумуляции азота и денитрификации пока неизвестны.

Антропогенный общемировой поток серы составляет около 150 тг (млрд тонн) в год. Главная причина эмиссии – сжигание горючих ископаемых, обычно имеющих заметные примеси серы, в процессе производства энергии. Из атмосферы сера примерно в одинаковых объемах попадает на сушу и океаны. Часть, попадающая на сушу, или взаимодействует с почвами и растительностью, или смывается в океан. Оценки антропогенного стока серы в океаны различаются вдвое (50–90 тг S/год).

Антропогенные соединения азота и серы повышают, иногда значительно, степень кислотности атмосферы и экосистем. Это приводит к значительным изменениям состояния почв, лесов, подземных вод, озер, рек, а также неблагоприятно воздействует на инженерные сооружения.

Накопление антропогенной серы и азота в экосфере не только приводит к значительной и широко распространенной асидификации, но также во все усиливающейся степени влияет на радиационный баланс Земли, глобальный баланс питательных веществ (биогенов) и окисляющую способность тропосферы.

При оценке реального воздействия кислотных осадков на ландшафты и их компоненты необходимо сравнивать величины осадков с буферной способностью почв и почвообразующих пород. В целом в зонах недостаточного увлажнения кислотные осадки нейтрализуются и потому серьезной проблемы не представляют. Наоборот, в зонах избыточного увлажнения, в особенности на Канадском и Финноскандинавском кристаллических щитах, воздействие кислотных осадков на почвы, леса, водные объекты сказывается наиболее неблагоприятным образом (рис. 12).

Кислотные осадки играют решающую роль в резком увеличении подвижности в ландшафте алюминия, высоко токсичного для живых существ. Нижеследующая цепочка на первый взгляд не связанных событий приводит к внезапному вымыванию алюминия из почв вследствие медленного и постепенного изменения буферной способности почв снижать кислотность:


Основы геоэкологии

Рис. 12. Потенциальная чувствительность экосистем суши к кислотным осадкам


а) в естественном состоянии алюминий в лесных почвах неподвижен, если рН почвы превышает 4,2. Его подвижность резко увеличивается, когда рН становится меньше 4,2;

б) атмосферные осадки начинают подкислять почвы, но процесс замедлен, потому что почвы содержат основные катионы, играющие буферную роль в снижении кислотности;

в) однако, как только буферная способность почв израсходована, рН почв резко снижается;

г) при пороговой величине рН равной 4,2 алюминий начинает вымываться из почвы, попадает в гидрографическую сеть, накапливаясь в воде озер;

д) проявляются неблагоприятные последствия, такие как гибель рыбы или ущерб лесу.

Почвы с низкой первоначальной буферной способностью, получающие к тому же значительное количество кислотных осадков, быстрее асидифицируются и отдают алюминий по сравнению с почвами, отличающимися высокой буферной способностью и(или) получающими меньше кислотных выпадений. Восстановление буферной способности почв происходит благодаря выветриванию горных пород, содержащих основные ионы, нейтрализующие кислотность. Но в районах со значительными кислотными осадками скорость выветривания не поспевает за скоростью асидификации.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию