Экспрессируемые мутации ведут к возникновению новых протеинов. Эти протеины могут оказаться полностью деформированными и способными лишь вызывать страшные болезни, а также быть полезными и помочь индивидууму выжить. Естественный отбор может подхватить благоприятную экспрессируемую мутацию и распространить ее настолько, что в конце концов каждый представитель вида будет ее носителем. С другой стороны, молчащие мутации никак не влияют на структуру протеинов. Естественный отбор не в состоянии уничтожить такие мутации или помочь им распространиться. Их судьба — дело случая.
Один из способов распознать руку естественного отбора — подсчитать молчащие и экспрессируемые мутации в человеческом гене. Когда ген подвергается сильному естественному отбору, в нем накапливается множество мутаций, меняющих форму производимого геном протеина. Таких экспрессируемых мутаций в гене оказывается гораздо больше, чем молчащих.
В первые годы XXI в. ученые при помощи этого и других подобных методов обнаружили тысячи генов, которые за 6 млн лет эволюции гоминид подверглись сильному естественному отбору. Ученые могут даже измерить силу естественного отбора, действовавшего на эти гены. Можно предположить, что гены в первых строках этого списка должны быть связаны с вещами, которые наиболее очевидным образом отличают нас от других животных, — с большим мозгом или прямохождением. В действительности это не так: сильнее всего изменили нашу ДНК пол и болезни.
Как я объясняю в 9-й и 10-й главах книги, именно эти два фактора представляют собой мощнейшую эволюционную силу природы. Поэтому не стоит удивляться тому, что и мы, люди, подчиняемся общему правилу. Вирусы, бактерии и другие патогенные организмы приспосабливались к нашему телу миллионы лет, и от появления новых средств защиты буквально зависело, жить или умереть нашим предкам. Но на новые средства защиты у хозяев паразиты отвечали изобретением новых способов обойти их. Гены, имеющие отношение к болезням и задействованные в этой непрерывной гонке вооружений, за б млн лет эволюции гоминид переменились кардинально.
Эволюция хорошо поработала и над генами, имеющими отношение к созданию яйцеклетки и сперматозоидов. Опыты на животных наглядно продемонстрировали, как половой отбор может тоже превратиться в гонку вооружений. Самцы плодовой мушки, к примеру, во время спаривания впрыскивают самке химические вещества, делающие ее менее восприимчивой к другим самцам. Самки, с другой стороны, изобретают способы нейтрализации этих веществ, что подталкивает самцов к созданию все более мощных составов. Не исключено, что именно эти неосознанные баталии между полами послужили причиной некоторых аспектов интенсивного отбора, действующего на человеческие гены.
Сперматозоиды, возможно, тоже конкурируют между собой. Любой ген, который позволит сперматозоидам стремительно созревать и при этом не реагировать на сигналы, которые в обычной ситуации заставили бы их прекратить деление, породит множество новых сперматозоидов — носителей этого гена. Известно, что некоторые из таких «генов быстрого развития» активизируются также и в раковых клетках. Ученые подозревают, что это не случайное совпадение. Что хорошо для быстро делящегося сперматозоида, пригодится и для быстро делящихся опухолевых клеток.
Воздействие естественного отбора на мозг было более тонким — но не менее важным. Шесть миллионов лет наши предки обходились втрое меньшим мозгом, чем сегодня у нас. Вероятно, их сознание не слишком отличалось от сознания всех прочих человекообразных обезьян. Они общались между собой при помощи невнятных восклицаний и жестов. Они не умели пользоваться огнем и делать сложные каменные орудия. Они плохо представляли себе, что думают и чувствуют другие особи. В 2001 г. ученые еще не знали ни одного связанного с мозгом гена, в котором заметно было бы действие естественного отбора. Сегодня, когда я пишу эти строки, ученым известны сотни таких генов.
Потребуется, вероятно, масса времени, чтобы собрать результаты всех новых исследований и понять, как именно из мозга примата получился мозг человека. Ученые пока просто не знают очень многого о том, как гены строят мозг. Но первые ключики к этой проблеме уже появляются. Пожалуй, самые многообещающие ключики пока предлагает ген, известный как ASPM. Впервые этот ген привлек к себе внимание ученых тем, что любая его мутация вызывает поистине катастрофический эффект. У детей с мутантными формами этого гена обычно формируется очень маленький мозг — это микроцефалы. У них почти отсутствует внешний слой (кора) головного мозга. Ясно, что ASPM играет в формировании и росте мозга какую-то критически важную роль. К тому же выяснилось, что после отделения предков человека от остальных обезьян этот ген подвергся сильному естественному отбору. Вполне возможно, что ASPM — часть ответа на вопрос о том, откуда у нас такой огромный мозг. Не исключено, что эволюция именно этого гена сыграла важнейшую роль в разрастании коры головного мозга, отвечающей за абстрактное мышление.
Однако размер — это еще не все. Похоже, помимо всего прочего, естественный отбор сформировал у человека гены, ответственные за определенные типы мышления. Возьмите, к примеру, язык. Как я писал в 2001 г., по некоторым признакам способность усваивать язык у человека является врожденной, а значит, запрограммирована генами. В тот момент, однако, ученым не был известен ни один ген, связанный с усвоением языков. Сегодня один такой ген выявлен. Он был обнаружен в лондонской семье, в которой из поколения в поколение имелись трудности с речью и письмом. В 2002 г. британские ученые объявили, что все члены этой семьи, испытывающие трудности с языком, являются носителями мутантной формы гена, который получил название FOXP2. Позже при помощи сканирования мозга удалось определить, что у людей с мутантной формой FOXP2 менее активен участок мозга, отвечающий за речь и известный как зона Брока.
Затем ученые сравнили человеческий вариант гена FOXP2 с вариантом, присутствующим в геноме других млекопитающих. Очевидно, у других видов, в отличие от человека, FOXP2 не порождает способность к усвоению языка. Но в 2005 г. в эксперименте с мышами удалось показать, что он влияет и на общение животных. Мышата с одной (вместо двух) работающей копией этого гена значительно реже звали писком мать. Те, у кого не оказалось ни одной работающей копии, не пищали вообще.
Сравнение количества экспрессируемых и молчащих мутаций в гене показало, что у человека FOXP2 подвергся интенсивному естественному отбору. Ученые даже определили, когда это произошло: менее 200 000 лет назад. Но ведь и вид Homo sapiens впервые появился примерно в это же время! Вообще, полученные результаты указывают на то, что развитый язык — довольно позднее приобретение, появившееся у гоминид сравнительно недавно.
Но естественный отбор на этом не прекратился. В нескольких недавних исследованиях были выявлены гены, эволюция которых пришлась на последние 50 000 лет. Особенно интересны результаты одного из таких исследований, опубликованные в марте 2006 г. учеными Чикагского университета. Они искали признаки естественного отбора, который проходил бы в последние несколько тысяч лет, и в своих поисках исходили из того, что с каждым новым поколением происходит расщепление генов.