Эволюция. Триумф идеи - читать онлайн книгу. Автор: Карл Циммер cтр.№ 31

читать книги онлайн бесплатно
 
 

Онлайн книга - Эволюция. Триумф идеи | Автор книги - Карл Циммер

Cтраница 31
читать онлайн книги бесплатно

Отношение 3:1, которое Мендель обнаружил при скрещивании гороха, объясняется особым механизмом, при помощи которого рецепты, заключенные в ДНК, передаются от одного поколения к другому. У растений и животных генные рецепты организованы в несколько томов, называемых хромосомами. К примеру, у нас, людей, 25 000 генов, объединенных в 23 пары хромосом. Хромосомы в паре могут иметь одинаковые версии каждого конкретного гена, а могут и разные. При делении обычной клетки каждая из двух дочерних клеток получает полный набор хромосом и, соответственно, генов. Но когда образуются половые клетки — сперматозоиды или яйцеклетки, — то каждая из них получает по одной хромосоме из каждой пары. Какую из двух половинок она получит — дело случая. Когда сперматозоид оплодотворяет яйцо, два набора хромосом сливаются в новые пары, образуя генетический код будущего организма.

Цвет растений гороха у Менделя, их текстура и остальные признаки, которые он регистрировал, контролировались различными генами. Представьте, что один из генов, которые наследовали его растения, существовал в двух различных вариантах; один из них делал горошины гладкими, другой — сморщенными. Сортовой горох с гладкими горошинами имел две одинаковые копии «гладкого» гена; сортовой горох со сморщенными горошинами — две копии гена, дающего сморщенность. Когда Мендель скрещивал два эти сорта, он получал гибриды, у каждого из которых было по одной копии гена «гладкости» и по одной — «сморщенности»; при этом все горошины у такого растения получались гладкими. Генетики до сих пор не до конца понимают почему, но гены, подобные гену «гладкости» гороха, способны доминировать над своими партнерами.

Но ген «сморщенности» в гибридах, хотя и молчит, никуда не исчез. Каждая из половых клеток — и женских, и мужских — такого гибрида получает лишь одну форму этого гена, так что их непосредственные отпрыски могут унаследовать один из родительских вариантов гена с вероятностью 50:50. Это соотношение приводит к тому, что четверть получит два гена сморщенности, четверть — два гена гладкости, а половина — по одной копии каждого типа. Поскольку новые гибриды (те растения, которым досталось по одной копии того и другого гена) опять дадут гладкие горошины, новом поколении отношение гладких горошин к сморщенным составит 3:1.

Наследование большинства признаков гораздо сложнее, чем то, что видел Мендель при скрещивании гороха. Очень часто вид может иметь не два варианта одного гена, а гораздо больше. И редко случается, чтобы за какой-то признак отвечал один-единственный ген. В большинстве случаев бывает задействовано множество разных генов. Род человеческий не делится на тех, кто несет в себе «ген высокого роста» и достигает двух метров роста, и тех, кто из-за «гена маленького роста» вырастает только до полутора метров. В формировании роста человека участвуют многие гены, так что замена одного из них даст совсем небольшую разницу. Если наша ДНК — это поваренная книга, то наше тело — это «шведский стол». Если использовать при выпечке хлеба соль вместо дрожжей, разница получится очень заметной, но если в соус чили по ошибке попадет тимьян вместо душицы, никто даже не заметит.

Переписывая поваренную книгу жизни

Разновидности, которые Дарвин наблюдал у своих голубей и усоногих рачков — и которые никак не мог объяснить, — возникают при изменении структуры ДНК. Вообще-то клетки способны воспроизводить ДНК почти безошибочно, но время от времени в процесс все же вкрадываются нарушения. Корректирующие белки находят и исправляют большую часть ошибок, но некоторые остаются. В основном такие редкие отклонения, известные как мутации, меняют всего лишь единственную букву в коде ДНК, но иногда они могут оказаться куда более радикальными. Бывает, что отдельные участки ДНК самопроизвольно «вырезают» себя из одного места и снова вставляются в другое, изменяя тем самым ген, в котором находят себе новый дом. Иногда при копировании ДНК во время деления клетки целый ген, а то и группа генов, случайно дублируется.

Еще в 1920-х гг. ученые начали осознавать, что мутации играют громадную роль в процессе эволюции и возникновении новых видов. Исследователи — в их числе британский математик Рональд Фишер и американский биолог Сьюэлл Райт — объединили естественный отбор и генетику, обеспечив Дарвиновой теории куда более прочное основание.

Когда ДНК мутирует, клетка, в которой это происходит, может просто потерять жизнеспособность и погибнуть, а может начать бешено размножаться и образовать опухоль. В любом из этих случаев со смертью организма-носителя мутация исчезнет. Но если мутация изменяет ДНК яйцеклетки или сперматозоида, она получает шанс на бессмертие. Она может попасть в гены детенышей, потом детенышей детенышей и т. д. От результата этой мутации — благоприятного, неблагоприятного или нейтрального — будет зависеть то, насколько часто она будет встречаться у будущих поколений. Мутации часто причиняют вред и даже убивают своего носителя раньше, чем он успеет родиться, — или сказываются на его способности к размножению. Если мутация заметно снижает шансы особи на репродуктивный успех, она постепенно исчезнет.

Но иногда вместо вреда мутация приносит некоторую пользу. Она может изменить структуру белков, сделав их более эффективными в переваривании пищи или разложении ядовитых веществ. Если действие мутации позволяет организму произвести на свет в среднем больше отпрысков, чем организмам, у которых ее не было, то постепенно она получит большое распространение в популяции. (Биологи сказали бы, что этот мутант более приспособлен, чем остальные.) Если потомство мутанта преуспевает, мутация, носителями которой они являются, получает большее распространение; иногда мутация оказывается настолько успешной, что прежняя версия гена просто исчезает. Естественный отбор, как показали Фишер и Райт, в значительной мере заключается в различной судьбе разных форм генов.

Особенно важным стал вывод Фишера о том, что естественный отбор действует через накопление множества мелких мутаций, а не через отдельные гигантские мутации. Фишер доказывал свой вывод при помощи хитроумной математики, но прояснить этот вопрос можно и на простом гипотетическом примере. Рассмотрим стрекозиные крылья. Они не должны быть слишком короткими — в этом случае стрекоза не сможет развить достаточную подъемную силу, чтобы оставаться в воздухе, — но не должны быть и слишком длинными — иначе ими будет слишком тяжело махать. Где-то между слишком малой и слишком большой длиной находится оптимальная длина крыльев, которая делает стрекозу максимально приспособленной. Если построить график зависимости приспособленности от длины крыла, мы получим график в виде пологого холма с максимумом на уровне оптимальной длины крыла. Если бы мы на самом деле переловили множество стрекоз и перемерили у них крылья, полученные точки, скорее всего, сосредоточились бы вокруг вершины холма.

А теперь представьте, что произошла мутация, которая изменила длину стрекозиных крыльев. Если приспособленность насекомого от этого уменьшится, другие насекомые с лучшей конструкцией крыла выиграют в конкурентной борьбе у потомков мутанта. Но если мутация подтолкнет стрекозу ближе к вершине нашего графика, естественный отбор будет ей благоприятствовать. Другими словами, естественный отбор, как правило, подталкивает жизнь к максимальной приспособленности.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию