Происхождение жизни. От туманности до клетки - читать онлайн книгу. Автор: Михаил Никитин cтр.№ 65

читать книги онлайн бесплатно
 
 

Онлайн книга - Происхождение жизни. От туманности до клетки | Автор книги - Михаил Никитин

Cтраница 65
читать онлайн книги бесплатно

Все эти недостатки РНК устранены в ДНК. ДНК содержит дезоксирибозу, не имеющую 2' – гидроксильных групп, с которых начинается большинство реакций гидролиза (рис. 14.1). Эти же гидроксильные группы важны для каталитической активности РНК, поэтому ДНК в отличие от РНК не образует саморазрезающихся рибозимов. Наконец, вместо урацила в ДНК содержится его аналог с дополнительной метильной (СН3) группой – тимин, поэтому урацил, получившийся при дезаминировании цитозина, легко можно обнаружить и починить.


Происхождение жизни. От туманности до клетки

Как показано в работах Манфреда Эйгена, для поддержания структуры живой системы из поколения в поколение необходимо, чтобы среднее количество новых значимых (т. е. сильно влияющих на приспособленность) мутаций в каждом поколении не превышало одной. Все современные организмы, имеющие геномы в диапазоне от 5000 до 5 000 000 нуклеотидов (а это вирусы и бактерии), имеют частоту мутаций в пределах 0,5–1 за поколение, что ниже порога Эйгена. Животные и растения с большими геномами обошли это ограничение за счет избыточности многих генов и полового размножения (так, у человека в среднем происходит 30 новых мутаций за поколение), но вряд ли эти механизмы работали в РНК-мире. Частота мутаций складывается из двух факторов: частоты ошибок при копировании генома и частоты повреждений генома между копированиями. Точность работы РНК-зависимой РНК-полимеразы в принципе может быть достаточно высокой: в экспериментах по искусственному отбору точность РНК-полимеразы вируса желтой лихорадки была доведена до 1 ошибки на 5 000 000 нуклеотидов, что близко к точности бактериальных ДНК-полимераз (Pugachev et al., 2004). Однако уязвимость РНК к гидролизу и дезаминированию цитозина неизбежно вызывает частое появление мутаций между копированиями и ограничивает размер РНК-генома на уровне менее 100 000 пар нуклеотидов.

Реакция превращения рибозы в дезоксирибозу очень сложна и связана с образованием опасных радикалов. Рибозимы не могут ее проводить, так как будет повреждаться рибоза в их структуре. Все известные ферменты, проводящие эту реакцию (рибонуклеотид-редуктазы), – большие белки размером около 1000 аминокислот, т. е. для их кодирования нужно как минимум 3000 нуклеотидов. Поэтому между РНК и ДНК-геномами, возможно, были промежуточные стадии, более простые в получении, чем ДНК, но более стабильные, чем РНК. Одной из таких промежуточных стадий мог быть метил-РНК-геном (Poole et al., 2000). В современных рибосомных и некоторых других клеточных РНК к отдельным 2' – гидроксильным (-ОН) группам рибозы присоединены метильные (-СН3) группы (рис. 14.1, справа). Это блокирует «паразитные» каталитические процессы и защищает цепь РНК от гидролиза в метилированном месте. Метилирование РНК у архей и эукариот делается одним ферментом при помощи «направляющих» малых ядрышковых РНК (мяРНК, snoRNA). Метилированию подвергается до 1–2 % нуклеотидов рибосомной РНК в клетках, а в пробирке в отсутствие мяРНК тот же фермент может прометилировать до 8 % нуклеотидов. Стабильность метил-РНК генома могла отодвинуть предел Эйгена в несколько раз по сравнению с РНК-геномом, возможно, до 300 000–500 000 пар нуклеотидов.

LUCA – организм или сообщество?

Предельный размер метил-РНК-генома недостаточен для кодирования всех белков, которые были у LUCA. Что еще важнее, в наборе генов LUCA закодированы дублирующие пути обмена веществ, которые разными способами дают один и тот же продукт. В современных клетках это бывает редко, и обычно два альтернативных пути работают в разных условиях, например при наличии и отсутствии кислорода. Так, в работе Браакмана и Смита (2013) изучалась эволюция путей фиксации углекислого газа, начиная от LUCA. Авторы пришли к выводу, что у LUCA было дублирование путей фиксации CO2, причем оба пути – восстановительный цикл Кребса и ацетил-КоА-путь – работали одновременно. Они предположили, что такое дублирование обеспечивало надежность обмена веществ в условиях несовершенной регуляции генов и слабой изоляции внутренней среды организма от внешней. Но вряд ли этим можно объяснить все случаи дублирования биохимических функций LUCA.

По набору путей обмена веществ получается, что общий предок мог «в одиночку» составлять целую экосистему с замкнутыми геохимическими циклами, что практически не встречается в современной биосфере. Лишь недавно в золотой шахте на глубине свыше 2 км была найдена бактерия Desulforudis audaxviator, полностью обеспечивающая себя всем необходимым без помощи других видов (см. http://elementy.ru/news/430872), но это удивительное исключение. Иными словами, по разнообразию путей обмена веществ последний общий предок больше похож на современное микробное сообщество из многих видов, чем на любой отдельный вид бактерий или архей.

На основе этих данных выдвигались радикальные идеи относительно неклеточной природы общего предка. Например, в статье Мартина и Рассела (2007) рассматривается LUCA в виде сообщества генетических элементов, населяющих микронного размера поры в сульфидных отложениях горячих источников. Стенки в минеральных осадках разделяют протоклетки друг от друга, выполняя функцию мембран. Хотя подобная стадия наверняка была в начале эволюции РНК-мира, присутствие ряда мембранных белков в реконструированном наборе генов LUCA, например, роторной АТФазы, говорит о наличии у него мембран. В последнее время исследователи (например, Koonin, 2009) склоняются к представлению о LUCA как о сообществе молекул РНК и ДНК, обитавшем на поверхности минералов, но имевшем липидные мембраны (вопросу эволюции мембран посвящена следующая глава). Мембраны могли покрывать плоские скопления белков и нуклеиновых кислот на поверхности минерала, чтобы уменьшить их размытие в воду, а также формировать свободно плавающие мембранные пузырьки – расселительные стадии плоских «организмов-сообществ», первые объекты, похожие на клетки.

Одни генетические элементы, составлявшие эти сообщества, демонстрировали более кооперативное поведение, кодировали компоненты рибосомы и ферменты обмена веществ и в дальнейшем вошли в состав клеток. Другие паразитировали на сообществе и стали предками вирусов. Обмен генов объединял это сообщество в достаточной степени, чтобы его члены не могли эволюционировать как раздельные биологические единицы. Каждый отдельный генетический элемент такого сообщества по размеру и содержанию входящих в него генов соответствует вирусу, плазмиде или оперону в клеточном геноме (оперон – группа генов, которые выполняют общую функцию, транскрибируются в общую матричную РНК и регулируются согласованно). Сообщество этих генетических элементов соответствует по количеству и разнообразию генов современному микробному сообществу. Но элементы, похожие на современные клетки (окруженные мембраной и с геномом в виде большой молекулы ДНК, объединяющей сотни оперонов), в такой системе выделить невозможно. Клетки выделились из этой системы позднее путем объединения нескольких главных оперонов, кодирующих рибосому и систему репликации, с большим количеством подчиненных оперонов, кодирующих ферменты обмена веществ.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию