Происхождение жизни. От туманности до клетки - читать онлайн книгу. Автор: Михаил Никитин cтр.№ 23

читать книги онлайн бесплатно
 
 

Онлайн книга - Происхождение жизни. От туманности до клетки | Автор книги - Михаил Никитин

Cтраница 23
читать онлайн книги бесплатно

Вообще-то, этот трюк умеют делать не только живые организмы. Как работает обычный холодильник? Он понижает температуру внутри холодильной камеры и повышает температуру снаружи, т. е. понижает энтропию системы «холодильник – комната». Но эту систему нельзя считать замкнутой: она получает энергию извне, по электросети, в которую включен наш холодильник. Если мы рассматриваем систему «холодильник – комната-электростанция», то ее энтропия со временем только растет. Точно так же любой живой организм нуждается во внешних источниках энергии. Растения получают ее в виде солнечного света, а животные – в виде пищи. В конечном счете почти вся биосфера питается энергией Солнца. Она выделятся в ходе термоядерных реакций, связанных с огромным повышением энтропии, поэтому энтропия системы «Земля – Солнце» со временем растет, несмотря на возникновение и эволюцию земной жизни.

Здесь надо подчеркнуть, что термодинамика (связанная родством с химией) в одном отношении отличается от всех остальных разделов физики, так или иначе выросших из классической механики. В классической механике все процессы обратимы (т. е. могут точно так же происходить в обратную сторону), а картина мира – детерминистическая. Это значит, что если знать все параметры всех тел во Вселенной на какой-то момент времени, то можно точно предсказать ее будущее на любой срок, а также до мельчайших деталей восстановить ее прошлое. А если все процессы обратимы, то объективного времени вообще не существует, а есть только субъективное время, вводимое для нашего удобства, в виде нумерации порядка событий. Даже теория относительности и квантовая механика, перевернувшие физику в XX веке, в этом отношении сохраняют верность классической механике: в уравнении Шрёдингера, лежащем в основе квантовой механики, время остается однозначно обратимым.

В термодинамике все не так: ее модель Вселенной – не вечное вращение планет вокруг Солнца, а паровая машина, в топке которой безвозвратно сгорает топливо. Согласно второму закону термодинамики эта машина постепенно сбавляет обороты, приближаясь к тепловой смерти. Поэтому ни один момент времени не равен предыдущему, события невоспроизводимы, а время объективно существует и имеет однозначное направление. Термодинамика разграничивает обратимые процессы, в которых энтропия не изменяется, и необратимые, в результате которых происходит возрастание энтропии.

Как показал Илья Пригожин, необратимость появляется, только если в системе возможно случайное поведение. Случайность создает различие между прошлым и будущим системы и, следовательно, необратимость. Движение молекул в газе можно считать случайным, и первые необратимые процессы, которые изучала термодинамика, были связаны с поведением газов в тепловых двигателях. В термодинамике картина мира становится стохастической, и предсказать будущее уже невозможно, даже зная все про настоящий момент.

Классическая термодинамика XIX века имела два ограничения. Во-первых, она рассматривала в основном замкнутые системы. Во-вторых, она изучала достаточно медленные процессы, в которых в каждый момент времени система находится близко к равновесию. В XX веке ситуация изменилась. Появились новые виды тепловых двигателей, и при их разработке инженеры столкнулись с явлениями, которые в классической равновесной термодинамике принципиально невозможны. Например, при создании жидкостных ракетных двигателей инженеры столкнулись с серьезной проблемой высокочастотных пульсаций горения. Внезапно в работающем двигателе начинались быстрые – сотни раз в секунду – колебания давления, которые нарастали до тех пор, пока двигатель не взрывался. Чем мощнее двигатель и чем выше давление в нем, тем чаще возникали эти пульсации. Найти причину этих колебаний и устранить их долго не удавалось. Среди людей, которые знали об этой проблеме и не могли ее решить, был и великий математик, президент Академии наук СССР Мстислав Келдыш. И вот в декабре 1964 года в его кабинет пришел молодой биофизик Анатолий Жаботинский, поставил на стол стакан, смешал в нем несколько реактивов, и жидкость в стакане стала менять цвет с красного на синий и обратно. Это была первая признанная колебательная химическая реакция, ныне известная как «реакция Белоусова – Жаботинского» (BZ-reaction). В тонком слое раствора, например, на тарелке, в ней получаются сложные узоры из движущихся колец и спиралей (рис. 5.3). Келдыш сразу понял, что жидкость, меняющая цвет туда-обратно, имеет прямое отношение к неустойчивости горения в ракетном двигателе.

Реакция Белоусова – Жаботинского стала важной моделью новой, неравновесной термодинамики, за создание которой Илья Пригожин получил Нобелевскую премию в 1977 году. В неравновесной термодинамике доказывается, что в открытых системах, далеких от равновесия, возможна самоорганизация: местное уменьшение энтропии, которое может проявляться как появление новых структур. Это могут быть и коллективные, упорядоченные движения многих молекул. Пригожин назвал такие структуры диссипативными, чтобы подчеркнуть парадокс: процесс диссипации (безвозвратной потери энергии) играет в их возникновении ключевую конструктивную роль.


Происхождение жизни. От туманности до клетки

Одним из простейших случаев такой самоорганизации являются ячейки Бенара. Если равномерно нагревать снизу тонкий слой вязкой жидкости, на поверхности станут видны структуры правильной, в классическом варианте шестиугольной формы (рис. 5.4). Это и есть ячейки Бенара. Их появление связано с особенностями перераспределения тепла в слое жидкости высокой плотности. Поначалу тепло будет проходить через жидкость только за счет теплопроводности. Но если греть достаточно сильно, то в какой-то момент в жидкости начнется конвекция: молекулы начнут движение, организуясь в упорядоченные структуры. Это противоречит классической термодинамике, где тепловой поток – это источник потерь (диссипации), разупорядочивания, а не порядка. Если в классической термодинамике тепловой поток считается источником потерь, то в ячейках Бенара он становится источником порядка. Пригожин характеризует возникшую ситуацию как гигантскую флуктуацию, стабилизируемую путем обмена энергией с внешним миром. Похожим образом возникают циклоны – самоорганизующиеся структуры в атмосфере Земли.


Происхождение жизни. От туманности до клетки

Самоорганизация в реакции Белоусова – Жаботинского имеет другое происхождение. Для появления самоорганизации в химических системах необходимо, чтобы в них происходили автокаталитические реакции, т. е. такие, где продукт реакции ускоряет синтез самого себя. Реакция Белоусова – Жаботинского (окисление малоновой кислоты броматом калия в присутствии солей церия) оказалась очень сложна, в ней насчитывается свыше 30 промежуточных продуктов, и помимо автокаталитических шагов в ней есть также подавление отдельными веществами синтеза друг друга.

В ракетных двигателях такой сложной химии нет. Столь опасная самоорганизация в них имеет смешанное физико-химическое происхождение. Движение газов в ракетном двигателе происходит очень быстро, сравнимо со скоростью химических реакций в них, поэтому газы в камере сгорания далеки от равновесия. На съемках старта ракет на керосиновом топливе («Союз», «Зенит», «Фалькон») хорошо видно, что ярко-желтое пламя тянется на десятки метров за ракетой. Желтый свет испускают частички сажи, которые являются промежуточными продуктами горения керосина. Конечные продукты сгорания керосина – вода, угарный и углекислый газы – прозрачны. Вместо автокатализа в камере сгорания срабатывает ускорение химических реакций в газе. Поскольку горение керосина в ограниченном объеме приводит к повышению температуры и давления, возникает обратная связь: случайное ускорение горения в одном месте повышает давление, а давление ускоряет горение дальше. Повышенное давление не может оставаться в одном месте. Волна повышенного давления распространяется по газу и отражается от стенок камеры, и в какой-то ее точке отраженные волны сходятся. Там горение резко ускоряется и волна повышенного давления (фактически звуковая волна) расходится из этой точки, усилившись. Так в камере сгорания возникают устойчивые, нарастающие колебания давления. Благодаря реакции Белоусова – Жаботинского, которая гораздо безопаснее в изучении, чем ракетный двигатель, удалось разобраться в этих неустойчивостях, разработать форму камеры сгорания, в которой эффективно поглощаются звуковые волны, и создать надежные и мощные ракетные двигатели.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию