Мусорная ДНК. Путешествие в темную материю генома - читать онлайн книгу. Автор: Несса Кэри cтр.№ 28

читать книги онлайн бесплатно
 
 

Онлайн книга - Мусорная ДНК. Путешествие в темную материю генома | Автор книги - Несса Кэри

Cтраница 28
читать онлайн книги бесплатно

Несходство длинных некодирующих РНК у разных видов (наблюдающееся почти повсеместно) заставило некоторых авторов счесть, что такие РНК вообще не играют важной роли. Ведь если бы они имели большое значение, то меньше бы менялись в ходе эволюции и развития видов. На самом же деле последовательности, которые содержат код для этих «мусорных» РНК, эволюционируют гораздо стремительнее, чем последовательности, кодирующие белки.

Что ж, логично. Однако здесь все-таки есть чрезмерное упрощение. Возможно, длинные некодирующие РНК и длинны по количеству содержащихся в них нуклеотидных оснований, но это не обязательно значит, что они представляют собой какие-то вытянутые волокна, плавающие в клетке. Дело в том, что длинные молекулы РНК способны складываться, образуя трехмерные структуры. Нуклеотидные основания РНК образуют пары, почти по тем же правилам, которым следуют две соединяющиеся нити ДНК. Но РНК — молекула однонитевая, поэтому ее нуклеотидные основания спариваются лишь на сравнительно коротких отрезках. В итоге молекула изгибается, принимая сложные, но стабильные формы. Эти трехмерные структуры могут играть очень важную роль в функционировании длинной некодирующей РНК. Вполне возможно, что сама такая трехмерная структура во многом схожа у разных видов, даже если ее нуклеотидная последовательность у них сильно отличается10. Это показано на рис. 8.1. К сожалению, трудно строить предсказания насчет схожести таких структур, основываясь на данных о нуклеотидной последовательности. Но такая методика все же полезна для нахождения функционально устойчивых длинных некодирующих РНК.


Мусорная ДНК. Путешествие в темную материю генома

Рис. 8.1. Схема показывает, как две однонитевые молекулы длинной некодирующей РНК с различными нуклеотидными последовательностями могут образовывать структуру одной и той же формы. Структура определяется правилами образования пар. Нуклеотид А связывается только с У, а нуклеотид Ц — только с Г (они показаны квадратиками с различной окраской или узором). Перед вами упрощенная схема. На самом деле длинные некодирующие РНК могут обладать множеством участков, способных формировать сложные структуры. Кроме того, эти структуры трехмерны (здесь они для простоты изображены как плоские).


Бревна или щепки?

Из-за трудностей, которые возникают при выявлении длинных некодирующих РНК в нуклеотидной последовательности человеческого генома, большинство исследователей сейчас склоняются к более прагматичному подходу их идентификации — детектируют сами эти молекулы непосредственно в клетках. Однако в научном сообществе нет единого мнения насчет интерпретации результатов таких изысканий. Ярые сторонники мусорных последовательностей могли бы заявить: если какая-то последовательность экспрессируется как длинная некодирующая молекула РНК, эта молекула экспрессируется так по какой-то причине. Другие ученые настроены более скептически. Они утверждают, что такая экспрессия длинных некодирующих РНК — просто «сопутствующее событие». Иными словами, они считают, что экспрессия длинных некодирующих РНК — просто своего рода побочный эффект, возникающий при включении «настоящего» гена.

Что же имеется в виду под «сопутствующим событием»? Допустим, мы отпиливаем сучья бензопилой. Основная цель нашей деятельности — получить бревна, чтобы построить дом или приготовить дрова для печки. Мы не стараемся получить щепки или опилки, но они все равно возникают в результате работы бензопилы. Незачем тратить силы, пытаясь избежать щепок. Они, в общем-то, не мешают выполнению нашей основной задачи. А если мы все-таки найдем способ от них избавиться, это может снизить эффективность производства бревен. А кроме того, ведь мы можем случайно натолкнуться на метод использования щепок и опилок (побочного продукта нашего производства). К примеру, для мульчирования почвы в цветочном горшке или при устройстве логова для ручной змеи.

Вот и «мусорные скептики» заявляют: экспрессия длинных некодирующих РНК попросту означает, что при экспрессии генов, происходящей на каком-то участке, уменьшается подавление экспрессии другого генетического материала. В рамках этой модели производство длинных некодирующих РНК — всего лишь неизбежное следствие важного процесса. Неизбежное, но, в общем-то, несущественное и безвредное. Между тем «мусорные энтузиасты» возражают: такая модель не объясняет некоторых особенностей экспрессии длинной некодирующей РНК. Например, различные типы таких РНК экспрессируются при анализе образцов тканей различных областей мозга11. Сторонники важной роли длинных некодирующих РНК заявляют: это свидетельствует о существенном значении таких молекул, иначе зачем бы разным зонам мозга включать разные длинные некодирующие РНК? Скептики возражают: различные длинные некодирующие РНК обнаруживаются лишь из-за того, что разные области мозга включают разные «классические» гены, кодирующие белки. Иными словами, опилки при разделывании дуба и сосны получаются разные, ничего удивительного.

Пока еще рано делать выводы. Получаемые сегодня данные позволяют дать один совет сторонникам двух этих крайних точек зрения: «Вам не мешало бы немного отдохнуть от споров». Скорее всего, истина где-то посередине. Существует только один по-настоящему надежный способ проверить гипотезу, согласно которой длинные некодирующие РНК выполняют какие-то функции в клетке. Этот способ состоит в том, чтобы проверить каждую из таких РНК в подходящем типе клеток. Подход представляется весьма разумным. Впрочем, он не столь прямолинеен, как может показаться. Отчасти причина этого кроется просто-напросто в цифрах. Если мы возьмемся детектировать сотни или даже тысячи различных длинных некодирующих РНК в клетке или в ткани, придется волей-неволей принимать решения, что же именно анализировать. Но для этого нужно предварительно иметь гипотезу насчет того, что эта конкретная длинная некодирующая РНК делает в клетке. Без такой гипотезы мы не будем знать, какие эффекты нам искать.

Есть и еще одна трудность. Многие из этих длинных некодирующих РНК находятся в той же области, что и «классические» гены, кодирующие белки. Иногда они могут находиться в той же самой позиции, просто на противоположной нити, как мы видели на примерю Xist и Tsix (см. главу 7). Другие такие РНК могут находиться на «мусорных» участках, лежащих между двумя областями одного и того же гена, кодирующими аминокислоты. (Впервые мы встретились с таким явлением, обсуждая атаксию Фридрейха в главе 2.) Существует масса способов расположения длинных некодирующих РНК. Это вызывает существенные экспериментальные затруднения при попытке исследовать функции нуклеотидных последовательностей.

Обычно функции генов проверяются при помощи их целенаправленного мутирования. Можно применять самые разные мутации, но чаще всего используются такие, которые либо выключают изучаемый ген, либо приводят к тому, что уровень его экспрессии начинает превышать норму. Но поскольку такое большое количество длинных некодирующих РНК пространственно перекрываются с генами, кодирующими белки, трудно внести мутацию в одно, не внося при этом мутацию в другое. А значит, перед нами встает очередная проблема: как определить, чем обусловлены наблюдаемые эффекты — изменением в длинной некодирующей РНК или изменением в гене, кодирующем белок?

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию