Большое космическое путешествие - читать онлайн книгу. Автор: Нил Деграсс Тайсон, Майкл Стросс, Дж. Ричард Готт cтр.№ 89

читать книги онлайн бесплатно
 
 

Онлайн книга - Большое космическое путешествие | Автор книги - Нил Деграсс Тайсон , Майкл Стросс , Дж. Ричард Готт

Cтраница 89
читать онлайн книги бесплатно

Эйнштейн сделал кое-какие расчеты при помощи своих уравнений поля. Он вычислил, какова должна быть кривизна пространства в вакууме вокруг Солнца. Затем он смог вычислить геодезическую, соответствующую спиральной мировой линии планеты. Он обнаружил, что в целом планеты в искривленном пространстве-времени следуют не по обычным эллиптическим орбитам, как считал Кеплер, а по эллиптическим траекториям, для которых характерна прецессия (то есть медленное вращение). Планета при орбитальном вращении не описывает все один и тот же эллипс; на самом деле, эллиптическая орбита любой планеты медленно вращается. Для большинства планет, которые достаточно далеки от Солнца, этот эффект ничтожен, но у Меркурия, чья орбита расположена ближе всего к Солнцу и отличается наибольшей кривизной, такой эффект можно было измерить. Эйнштейн вычислил, что эллиптическая орбита Меркурия должна испытывать прецессию (поворачиваться) на 43 секунды дуги за столетие. Эврика! Тогда удавалось обосновать непонятную прецессию орбиты Меркурия, время от времени фиксируемую астрономами, – Эйнштейн знал об этом явлении, а Ньютон не мог объяснить.

Эйнштейн так разволновался от этих вычислений, что у него даже (по его словам) сердце заколотилось. Уравнения давали верный результат – 43 секунды дуги за столетие, – изреченный самой Природой. Эти расчеты он сделал 18 ноября 1915 года. На тот момент он еще пользовался неверными уравнениями поля Rμν = 8πTμν, но, к счастью, в данном конкретном случае они работали отлично, поскольку Солнце находится в вакууме.

В тот же день он вычислил, насколько должны искривляться лучи света, проходящие мимо Солнца. Он получил геодезическую линию, по которой должен идти свет в искривленном пространстве-времени поблизости от Солнца. У него получалось, что свет далекой звезды, который на пути к Земле пролетает мимо края солнечного диска, должен отклоняться на 1,75 секунды дуги. Такое отклонение можно наблюдать. Как рассмотреть звезды, расположенные у края солнечного диска? Нужно дождаться солнечного затмения, когда Луна попросту затмевает яркий солнечный свет. Можно измерить положения звезд на фотопластинке во время затмения, а затем измерить их полгода спустя, когда Земля будет по другую сторону от Солнца, а само Солнце – вдали от этих звезд. Потом останется сравнить две эти фотографии и положения звезд на них. Согласно уравнениям Эйнштейна, близ солнечного диска звезды должны быть сдвинуты на 1,75 секунды дуги. Эйнштейн предложил провести такой эксперимент во время солнечного затмения.

В этом отношении ему повезло. Ранее, еще не до конца доработав уравнения поля, он выдвигал качественную аргументацию, опираясь на принцип эквивалентности в примере с ускоряющимся космическим кораблем. Луч света, летящий прямо по горизонтали в межзвездном пространстве, после попадания в космический корабль должен был искривляться, поскольку прямой горизонтальный луч света в итоге врежется в корабельный пол, который с ускорением движется вверх навстречу лучу. Руководствуясь этой аналогией, Эйнштейн утверждал, что луч света должен искривляться под действием гравитации. Этот аргумент верно учитывал искривление во времени, но упускал искривление в пространстве, необходимое для построения полноценных уравнений поля, так что Эйнштейн получал лишь половину правильного ответа. У него получалось отклонение в 0,875 секунды дуги – именно к такому ответу пришел бы и Ньютон. Эйнштейн опубликовал эти выкладки и предложил проверить их во время солнечного затмения в 1914 году. Но началась Первая мировая война, и никаких экспедиционных наблюдений сделать не удалось. К счастью для Эйнштейна. В 1915 году у него уже был верный показатель отклонения света в искривленном пространстве-времени – 1,75 секунды дуги, и этот показатель расходился с ньютоновским прогнозом. Если бы эксперимент показал отклонение 0,875 секунды дуги – это подтвердило бы правоту Ньютона и опровергло Эйнштейна. Если бы никакого отклонения не обнаружилось, то Эйнштейн бы оказался побежден, но правоты Ньютона это бы не отменяло: возможно, предположил бы Ньютон, масса притягивает массу, но не притягивает свет. В таком случае Ньютон оставался бы в деле. Оставалось последнее решающее испытание. Эйнштейновский расчет прецессии Меркурия был эпигнозом, то есть прогнозом задним числом. Этот эпигноз объяснял уже известный эмпирический факт, не учтенный Ньютоном. Но в данном случае Эйнштейн делал именно прогноз, причем куда более радикальный.

В мае 1919 года были снаряжены две британские экспедиции, которые должны были 29 мая 1919 года наблюдать солнечное затмение. Одна точка наблюдения находилась в бразильском городе Собрал, а другая – на острове Принсипи у берегов Африки. Сэр Артур Эддингтон объявил о ее результатах на общем собрании Королевского общества и Королевского астрономического общества в Лондоне 6 ноября 1919 года. В Собрале наблюдалось отклонение света на 1,98 ± 0,30 секунды дуги, а на Принсипи – отклонение 1,61 ± 0,30 секунды дуги. Оба результата согласовывались с эйнштейновским значением 1,75 секунды дуги в пределах измерительной погрешности ±0,30 секунды дуги, и оба противоречили мнению Ньютона. Нобелевский лауреат Дж. Дж. Томпсон, первооткрыватель электрона, возглавлявший собрание, заявил: «Это самый важный результат, полученный в связи с теорией гравитации со времен Ньютона… Он представляет собой одно из величайших достижений человеческой мысли».

На следующий день фотография Эйнштейна появилась в газете London Times под заголовком «Революция в науке». Через два дня о нем написали и в New York Times. Именно тогда Эйнштейн превратился из выдающегося ученого своего времени в мировую знаменитость, человека, известного всем. В этот момент он сравнялся с Исааком Ньютоном.

Полученные Эддингтоном данные об искривлении света вскоре были независимо подтверждены с еще более высокой точностью У.У. Кэмпбеллом и Р. Трамплером, которые в 1922 году наблюдали солнечное затмение в Австралии. Они зафиксировали отклонение в 1,82 ± 0,20 секунды дуги, которое, опять же, согласовывалось с эйнштейновской оценкой 1,75 секунды дуги.

Вот как сам Эйнштейн говорил о своих мытарствах, пережитых в период работы над теорией относительности в 1907–1915 годах:

«Годы ревностного поиска истины во тьме, такой истины, которую чувствуешь, но не можешь выразить, когда испытываешь страстное желание и впадаешь то в уверенность, то в отчаяние, пока не достигаешь, наконец, ясности и понимания, все это ведомо лишь тем, кто сам испытывал подобное» [32].

Глава 20
Черные дыры

Автор: Дж. Ричард Готт


Эта глава посвящена самым таинственным объектам во Вселенной – черным дырам. Одно из первых точных решений, удовлетворявшее эйнштейновским уравнениям общей теории относительности, соответствовало черной дыре. Точное решение эйнштейновских уравнений – это пространство-время, чья геометрия в каждой точке характеризуется кривизной, и в каждой точке этого пространства-времени уравнения решаются локально. Особенно интересно решение для геометрии пустого пространства, окружающего точечную массу. Здесь мы говорим о вакуумных уравнениях поля, поскольку эти уравнения применимы к пустоте. Именно эти уравнения пытался решить Эйнштейн, исследуя орбиту Меркурия и искривление света в вакууме поблизости от Солнца. Но найти такое решение было сложно, поскольку никто не представлял, какова должна быть его геометрия, так что Эйнштейн удовлетворился приблизительным решением. В рамках этого решения он предполагал, что пространство-время приблизительно плоское, как и в специальной теории относительности, но с небольшими возмущениями (отклонениями от идеально плоской формы). Решать уравнения для небольших возмущений оказалось проще, поскольку уже было известно, какова должна быть исходная геометрия и, отталкиваясь от нее, было удобнее находить решения с учетом небольших поправок. Поскольку скорости объектов, вращающихся вокруг Солнца, невелики по сравнению со скоростью света, околосолнечное пространство лишь слегка искривлено. Поэтому приблизительное решение Эйнштейна оказалось достаточно точным, равно как и спрогнозированные им величины для орбиты Меркурия и искривления света около Солнца. Возможно, Эйнштейн считал, что найти точные решения для этих уравнений будет слишком сложно. Так или иначе, он остановился на приблизительном.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию