Разумеется, это касалось только тех соперников, кто также находился онлайн и чутко держал руку на пульсе, а так действовали далеко не все. Требовать от 50-летнего гроссмейстера отказаться от использования своего любимого блокнота в кожаном переплете, напечатанных турнирных бюллетеней и других устоявшихся с годами привычек было все равно что предлагать успешному писателю сменить ручку и бумагу на текстовый редактор или художнику — отставить мольберт и начать рисовать на мониторе. Но в шахматах нельзя было выжить, не адаптируясь к новым технологиям. Те, кто быстро овладевал новыми методами, процветали; не сумевшие приспособиться к переменам быстро скатились вниз в рейтинг-листе.
Хотя это невозможно доказать, я уверен, что стремительный закат многих шахматных ветеранов в период между 1989 и 1995 годами, когда использование ChessBase стало нормой, во многом был связан с их неспособностью освоить новые технологии. В 1990 году в первой сотне сильнейших шахматистов мира насчитывалось больше 20 активных игроков, родившихся до 1950-го. К 1995 году их осталось всего семеро, и только один по-прежнему входил в шахматную элиту: нестареющий Виктор Корчной, родившийся в 1931-м и противостоявший мне в лондонском матче претендентов в 1983 году. Еще одним исключением был мой великий соперник Анатолий Карпов 1951 года рождения — он продолжал занимать высокие позиции в рейтинге, несмотря на нежелание принимать компьютеры и интернет. Однако Карпов полагался не только на свой огромный талант и опыт. Как экс-чемпион мира, он располагал значительными ресурсами и мог позволить себе в ходе исследований опираться на помощь коллег — преимущество, имевшееся далеко не у всех шахматистов. То, что возможность обеспечить себе поддержку «секундантов» (так в шахматном мире называют ассистентов в память об эпохе дуэлей) перестала быть значимым фактором, представляет собой еще один показатель демократизирующего влияния технологий на мир шахмат.
Возможно, компьютеры укоротили карьеру некоторых более пожилых шахматистов, зато они позволили быстрее расти молодым игрокам — благодаря не только игре с шахматными движками, но и тому, что компьютерные базы данных сделали огромные объемы шахматной информации доступными для молодых гибких умов. Даже я бываю поражен тем, как эти юные дарования в мгновение ока переключаются с одной партии на другую, переходят от одной ветви анализа к другой. Компьютерное обучение имеет свои недостатки, о которых я расскажу чуть позже, но нет никаких сомнений в том, что оно еще больше изменило баланс сил на игровом поле, или на шахматной доске, в пользу молодежи. На протяжении моей профессиональной карьеры мне приходилось отстаивать свой чемпионский титул в сражениях не просто с новым поколением игроков, а с поколением, которое росло, используя передовые инструменты, не существовавшие во времена моего детства.
Я родился как раз вовремя, чтобы оседлать эту волну, вместо того чтобы быть сметенным ею. Но я также оказался главной мишенью для нового врага, день ото дня стремительно наращивавшего силу. Шахматные машины наконец-то вплотную подобрались к тому, чтобы завладеть шахматной короной, которая принадлежала мне с 9 ноября 1985 года.
Сможет ли шахматная машина победить чемпиона мира? Этот вопрос волновал умы шахматных программистов на протяжении нескольких десятилетий. Как и следовало ожидать, первые прогнозы на заре компьютерной эры были чересчур оптимистичны. Тем не менее группу из Университета Карнеги — Меллона, пообещавшую обыграть чемпиона мира к 1967 году, можно считать в некоторой степени отомщенной, поскольку команда из того же учебного заведения впоследствии создала компьютер Deep Blue, благодаря которому предсказание их коллег сбылось — пусть даже спустя 40 лет, а не десять.
На 12-м ежегодном Северо-Американском чемпионате по шахматам среди компьютерных программ (Лос-Анджелес, 1982) сильнейшие в мире машины боролись друг с другом за чемпионский титул. Belle, детище Кена Томпсона и Джо Кондона, вновь подтвердила свое превосходство над остальными, доказав преимущества специализированной аппаратной архитектуры и шахматных процессоров, впоследствии реализованные в Deep Blue. Томпсон работал в знаменитом исследовательском центре компании Bell Laboratories. На его счету множество научных достижений, в том числе участие в создании операционной системы Unix.
Если говорить о результатах, Belle окончательно ответила на вопрос, поставленный в 1950 году Клодом Шенноном: что эффективнее — «быстрые, но глупые» программы типа А или «умные, но медленные» программы типа Б? Стало ясно, что грубой силы — вместе с быстрым поиском — достаточно для очень сильной игры. Несмотря на относительное отсутствие знаний и другие недостатки оценочной функции, Belle с ее чистой скоростью вычислений 160 000 позиций в секунду давала результаты, позволявшие ей громить более умные программы, даже работавшие на суперкомпьютерах Cray. По поводу того, когда машины смогут победить чемпиона мира (тогда им был Анатолий Карпов), крупные специалисты в области компьютерных шахмат демонстрировали в кулуарах сдержанный оптимизм.
Монти Ньюборн, один из организаторов чемпионата и инициаторов развития компьютерных шахмат, высказал наиболее оптимистичное предположение: через пять лет. Другой эксперт — Майк Валво, имевший звание международного мастера, — склонялся к десяти годам. Создатели популярной программы для ПК Sargon дали самый точный прогноз — 15 лет. Томпсон, как и другие представители обширного лагеря пессимистов, считал, что это может случиться не ранее 2000-го. Несколько человек полагали, что такого никогда не произойдет, учитывая проблемы, с которыми столкнутся даже самые быстрые машины в соответствии с законом убывающей отдачи при добавлении шахматных знаний. Но это было в последний раз, когда звучал вопрос «Смогут ли?». Отныне спрашивали только «Когда?».
В конце 1980-х, спустя десятилетие стабильного прогресса, компьютерное шахматное сообщество поняло, что в противостоянии «человек — машина» время находится на его стороне, и уверенно скорректировало свои прогнозы. Результаты опроса 43 экспертов, проведенного в 1989 году на чемпионате мира по шахматам среди компьютерных программ в канадском Эдмонтоне, отражали последние достижения машин в соперничестве с людьми. За год до этого компьютер впервые в истории победил гроссмейстера в турнирной партии, и дорожная карта дальнейшего совершенствования программ стала совершенно ясна: немного больше знаний и намного больше скорости. Тем не менее всего один эксперт правильно указал, что это судьбоносное событие случится в 1997 году; большинство прогнозировали различные сроки в пределах десятилетия. Мюррей Кэмпбелл, один из создателей Deep Blue, назвал 1995 год, а сам Клод Шеннон — 1999-й.
Возможно, немного несправедливо напоминать компьютерному шахматному сообществу о его ранних ошибочных прогнозах и предположениях. В конце концов, люди традиционно слабы в предвидении будущего, но крепки задним умом. Но в этом есть смысл, поскольку во многих случаях эти неправильные выводы, как слишком оптимистичные, так и чересчур пессимистичные, характеризуют сегодняшний поток предсказаний касательно искусственного интеллекта.
Переоценка потенциала каждой зарождающейся технологии — такое же обычное дело, как и преуменьшение ее недостатков. Богатое воображение мгновенно рисует нам картины того, как та или иная инновация практически в одночасье перевернет нашу жизнь. Подобные устойчиво неверные оценки обусловлены в том числе тем, что мы, как правило, игнорируем технические препятствия, которые неизбежно возникают. Дело в том, что человеческая природа подчиняется другим законам развития, чем природа технического прогресса. Мы рассматриваем прогресс как линейное, постепенное улучшение. В действительности же это верно только для зрелых технологий, уже прошедших стадию разработки и внедрения. Например, таких как полупроводники, развитие которых хорошо описывается законом Мура, или солнечные батареи, чья производительность повышается медленно, но верно.