Как работает вселенная. Введение в современную космологию - читать онлайн книгу. Автор: Сергей Парновский cтр.№ 44

читать книги онлайн бесплатно
 
 

Онлайн книга - Как работает вселенная. Введение в современную космологию | Автор книги - Сергей Парновский

Cтраница 44
читать онлайн книги бесплатно

Криогенные кристаллические детекторы представляют собой сборки из полупроводниковых кристаллов, охлажденные до сверхнизких температур. В этих детекторах измеряются электрический заряд и фононы (в виде тепловыделения). Это позволяет достичь хорошего подавления радиоактивного фона. Наиболее известным криогенным кристаллическим детектором является установка CDMS II, расположенная в Суданских горах (США) и работающая с 2006 г. Она содержит 30 детекторов, включает в сумме 4,75 кг германия и 1,1 кг кремния, охлажденных до температуры 50 мК.

Также широко известна установка CoGeNT, расположенная там же и использующая 440-граммовый кристалл германия, охлажденный до температуры жидкого азота, о результатах работы которой мы поговорим чуть позже. Кроме них заслуживают упоминания криогенные кристаллические детекторы коллаборации EDELWEISS, расположенные в Модане (Франция), и коллаборации CRESST, расположенные в подземном туннеле Национальной лаборатории Гран-Сассо (Италия).

Среди сцинтилляционных детекторов наибольшую известность получила установка DAMA/NaI, после усовершенствования переименованная в DAMA/LIBRA, расположенная в Гран-Сассо. Как следует из названия, в ней используются кристаллы йодида натрия массой 100 кг для DAMA/NaI и 250 кг для DAMA/LIBRA. Идея этого эксперимента заключается в поисках описанной выше сезонной вариации. Этот детектор имеет наибольшую экспозицию среди всех существующих детекторов. Еще в 2000 г. коллектив авторов эксперимента заявил об обнаружении вимпов с очень низкой массой порядка 10 ГэВ. Более того, параметры вимпов, полученные на этой установке, не укладываются в ограничения, накладываемые другими экспериментами. Мы подробно обсудим этот вопрос после описания всех экспериментов. Кроме DAMA заслуживает упоминания установка KIMS, расположенная в Янъяне (Корея), не зафиксировавшая вимпов.

Детекторы на основе сжиженных благородных газов основаны на регистрации не только первичных, но и вторичных сцинтилляций, вызываемых электронами ионизации. Это среди прочего позволяет эффективно отфильтровывать β- и γ-фон. В качестве рабочего вещества обычно используются неон, аргон или ксенон. Этот тип детектора становится все более популярным в последнее время благодаря дешевизне и относительной простоте эксплуатации. Наиболее примечательной установкой с детектором данного типа является установка XENON, расположенная все в том же Гран-Сассо. В первой фазе эксперимента с 10-литровым ксеноновым детектором XENON 10 в результате 136 кг-дней экспозиции были получены очень жесткие ограничения на сечение рассеяния вимпов. Среди прочего, по заверениям авторов эксперимента, эти ограничения исключают возможность существования вимпов в области параметров, заявленных в эксперименте DAMA.

Кроме детекторов, ориентированных на поиск любых вимпов, есть также установки, направленные на поиск конкретных вариантов темной материи. К таким установкам относятся, например, детекторы ADMX и APEX, спроектированные для поиска аксионов. Впрочем, пока что накопленная экспозиция этих установок слишком мала, чтобы делать какие-либо выводы.

Теперь, как мы и обещали, более подробно обсудим результаты экспериментов DAMA, CoGeNT и XENON 10, вызвавшие бурные дискуссии в научной литературе. Около 2010 г. наблюдалось общее чувство оптимизма, связанного с этими исследованиями; ожидалось, что открытие вимпов уже «ждет за углом». Основной причиной такого оптимизма была информация про положительные результаты опытов на детекторе DAMA/NaI и позже DAMA/LIBRA.

Все началось с того, что в уже далеком 2000 г. авторы эксперимента DAMA/NaI заявили, что им удалось обнаружить частицы темной материи с массой 8–12 ГэВ, сечением рассеяния порядка 10–40 см2, и впоследствии подтвердили эти параметры по результатам наблюдений на установке DAMA/LIBRA. Спустя 10 лет авторы эксперимента CoGeNT опубликовали результаты, в которых было выделено три события, с вероятностью около 30 % соответствующие вимпам с массой 5–15 ГэВ и сечением рассеяния порядка 10–40 см2. Тем не менее при общем всплеске энтузиазма эти конкретные результаты были встречены со значительным скепсисом. Во-первых, наиболее распространенная среди теоретиков оценка массы вимпов находится в районе 60–70 ГэВ. Во-вторых, ограничения на сечение рассеяния темной материи, полученные в экспериментах CDMS II, XENON 10 и XENON 100, по заверению ряда авторов, исключают существование вимпов с такими параметрами.

Естественно, практически сразу возникли попытки примирить результаты этих экспериментов. Некоторые впечатлительные теоретики поспешили придумать экзотический вид вимпов, который проявлял бы себя в установках DAMA и CoGeNT, но не проявлял в установке XENON. Для этого они рассмотрели все мыслимые комбинации как спин-зависимого, так и спин-независимого упругого и неупругого рассеяний, в том числе с нарушением изоспина [76], и подобрали подходящий вариант. В более серьезных работах утверждается, что эти параметры вполне совместимы со всеми ограничениями, если принять во внимание некоторые тонкие моменты, связанные с интерпретацией результатов эксперимента XENON, описание которых выходит далеко за рамки этой книги. Наиболее же правдоподобными, с нашей точки зрения, выглядят объяснения экспериментаторов. В обзорах результатов поиска вимпов в детекторах на сжиженных благородных газах отмечается, что в силу конструктивных особенностей установка DAMA не способна различать ядерные и электронные отдачи и полученные сезонные вариации можно объяснить вариациями потока космических мюонов и фона быстрых нейтронов в Гран-Сассо (Manalaysay, 2011; Cline и Simpson, 2015). То же самое относится и к установке CoGeNT. Кроме того, пресловутые тонкие моменты в интерпретации результатов установки XENON можно обойти, если определять энергию отдачи не по первичным, а по вторичным сцинтилляциям. Это позволило значительно повысить точность ограничений на максимальное сечение рассеяния вимпов, которое оказалось существенно меньше заявленного в экспериментах DAMA и CoGeNT.

В тот период результаты некоторых других детекторов, отличных от DAMA, были не очень убедительными, но время шло, было накоплено больше данных, и стало ясно, что ни один из них не открыл ничего, что могло бы напоминать четкое обнаружение вимпов. В конце концов они всего лишь установили более строгие и жесткие ограничения на величину поперечного сечения вимпов, и с какого-то момента их результаты стали полностью несовместимы с данными DAMA/LIBRA.

Учитывая вышеперечисленные проблемы с экспериментом DAMA/LIBRA, для проверки его результатов готовится эксперимент DM-Ice, который полностью повторит схему эксперимента DAMA/LIBRA, но с одним отличием: установка будет размещена на Южном полюсе, на базе нейтринной обсерватории IceCube. Это позволит полностью исключить суточные вариации космических лучей.

Описанные выше методы получили название прямых методов обнаружения темной материи, хотя слово «прямые» в некоторых случаях следовало бы заключить в кавычки. Но кроме них есть также и непрямые методы обнаружения темной материи. К ним относятся преимущественно высотные и космические эксперименты по поиску частиц и античастиц с высокими энергиями, которые, по мнению теоретиков, должны образовываться при взаимодействии частиц, составляющих темную материю. Проблема состоит в том, что антиматерия образуется в галактическом диске без всякой темной материи, поэтому проблема интерпретации результатов таких наблюдений стоит особенно остро.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию