Ýôôåêò òåëîìåð. Ðåâîëþöèîííûé ïîäõîä ê áîëåå ìîëîäîé, çäîðîâîé è äîëãîé æèçíè - ÷èòàòü îíëàéí êíèãó. Àâòîð: Ýëèçàáåò Ýëåí Áëýêáåðí, Ýëèññà Ýïåëü còð.¹ 85

÷èòàòü êíèãè îíëàéí áåñïëàòíî
 
 

Îíëàéí êíèãà - Ýôôåêò òåëîìåð. Ðåâîëþöèîííûé ïîäõîä ê áîëåå ìîëîäîé, çäîðîâîé è äîëãîé æèçíè | Àâòîð êíèãè - Ýëèçàáåò Ýëåí Áëýêáåðí , Ýëèññà Ýïåëü

Còðàíèöà 85
÷èòàòü îíëàéí êíèãè áåñïëàòíî

6. United Kingdom, Office for National Statistics, “One Third of Babies Born in 2013 Are Expected to Live to 100,” December 11, 2013, The National Archive, http://www.ons.gov.uk/ons/rel/lifetables/historic-and-projected-data-from-the-period-and-cohort-life-tables/2012-based/sty-babies-living-to-100.html, accessed November 30, 2015.

7. Bateson, M., “Cumulative Stress in Research Animals: Telomere Attrition as a Biomarker in a Welfare Context?” BioEssays 38, no. 2 (February 2016): 201–212, doi:10.1002/bies.201500127.

8. Epel, E., E. Puterman, J. Lin, E. Blackburn, A. Lazaro, and W. Mendes, “Wandering Minds and Aging Cells,” Clinical Psychological Science 1, no. 1 (January 2013): 75–83, doi:10.1177/2167702612460234.

9. Carlson, L. E., et al., “Mindfulness-Based Cancer Recovery and Supportive-Expressive Therapy Maintain Telomere Length Relative to Controls in Distressed Breast Cancer Survivors.” Cancer 121, no. 3 (February 1, 2015): 476–484, doi:10.1002/cncr.29063.

Ãëàâà 1. Ïî÷åìó èç-çà ïðåæäåâðåìåííîãî ñòàðåíèÿ êëåòîê ìû âûãëÿäèì è ÷óâñòâóåì ñåáÿ ñòàðûìè

1. Epel, E. S., and G. J. Lithgow, “Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity,” Journals of Gerontology, Series A: Biological Sciences and Medical Sciences 69 Suppl. 1 (June 2014): S10–16, doi:10.1093/gerona/glu055.

2. Baker, D. J., et al., “Clearance of p16Ink4a-positive Senescent Cells Delays Ageing-Associated Disorders,” Nature 479, no. 7372 (November 2, 2011): 232–236, doi:10.1038/nature10600.

3. Krunic, D., et al., “Tissue Context-Activated Telomerase in Human Epidermis Correlates with Little Age-Dependent Telomere Loss,” Bio-chimica et Biophysica Acta 1792, no. 4 (April 2009): 297–308, doi:10.1016/j.bbadis.2009.02.005.

4. Rinnerthaler, M., M. K. Streubel, J. Bischof, and K. Richter, “Skin Aging, Gene Expression and Calcium,” Experimental Gerontology 68 (August 2015): 59–65, doi:10.1016/j.exger.2014.09.015.

5. Dekker, P., et al., “Stress-Induced Responses of Human Skin Fibroblasts in Vitro Reflect Human Longevity,” Aging Cell 8, no. 5 (September 2009): 595–603, doi:10.1111/j.1474–9726.2009.00506.x; and Dekker, P., et al., “Relation between Maximum Replicative Capacity and Oxidative Stress-Induced Responses in Human Skin Fibroblasts in Vitro,” Journals of Gerontology, Series A: Biological Sciences and Medical Sciences 66, no. 1 (January 2011): 45–50, doi:10.1093/gerona/glq159.

6. Gilchrest, B. A., M. S. Eller, and M. Yaar, “Telomere-Mediated Effects on Melanogenesis and Skin Aging,” Journal of Investigative Dermatology Symposium Proceedings 14, no. 1 (August 2009): 25–31, doi:10.1038/jidsymp.2009.9.

7. Kassem, M., and P. J. Marie, “Senescence-Associated Intrinsic Mechanisms of Osteoblast Dysfunctions,” Aging Cell 10, no. 2 (April 2011): 191–197, doi:10.1111/j.1474-9726.2011.00669.x.

8. Brennan, T. A., et al., “Mouse Models of Telomere Dysfunction Phenocopy Skeletal Changes Found in Human Age-Related Osteoporosis,” Disease Models and Mechanisms 7, no. 5 (May 2014): 583–592, doi:10.1242/dmm.014928.

9. Inomata, K., et al., “Genotoxic Stress Abrogates Renewal of Melanocyte Stem Cells by Triggering Their Differentiation,” Cell 137, no. 6 (June 12, 2009): 1088–1099, doi:10.1016/j.cell.2009.03.037.

10. Jaskelioff, M., et al., “Telomerase Reactivation Reverses Tissue Degeneration in Aged Telomerase-Deficient Mice,” Nature 469, no. 7328 (January 6, 2011): 102–106, doi:10.1038/nature09603.

11. Panhard, S., I. Lozano, and G. Loussouam, “Greying of the Human Hair: A Worldwide Survey, Revisiting the ‘50’ Rule of Thumb,” British Journal of Dermatology 167, no. 4 (October 2012): 865–873, doi:10.1111/j.1365-2133.2012.11095.x.

12. Christensen, K., et al., “Perceived Age as Clinically Useful Biomarker of Ageing: Cohort Study,” BMJ 339 (December 2009): b5262.

13. Noordam, R., et al., “Cortisol Serum Levels in Familial Longevity and Perceived Age: The Leiden Longevity Study,” Psychoneuroendocrinology 37, no. 10 (October 2012): 1669–1675; Noordam, R., et al., “High Serum Glucose Levels Are Associated with a Higher Perceived Age,” Age (Dordrecht, Netherlands) 35, no. 1 (February 2013): 189–195, doi:10.1007/s11357-011-9339-9; and Kido, M., et al., “Perceived Age of Facial Features Is a Significant Diagnosis Criterion for Age-Related Carotid Atherosclerosis in Japanese Subjects: J-SHIPP Study,” Geriatrics and Gerontology International 12, no. 4 (October 2012): 733–740, doi:10.1111/j.1447-0594.2011.00824.x.

14. Codd, V., et al., “Identification of Seven Loci Affecting Mean Telomere Length and Their Association with Disease,” Nature Genetics 45, no. 4 (April 2013): 422–427, doi:10.1038/ng.2528.

15. Haycock, P. C., et al., “Leucocyte Telomere Length and Risk of Cardiovascular Disease: Systematic Review and Meta-analysis,” BMJ 349 (July 8, 2014): g4227, doi:10.1136/bmj.g4227.

16. Yaffe, K., et al., “Telomere Length and Cognitive Function in Community-Dwelling Elders: Findings from the Health ABC Study,” Neurobiology of Aging 32, no. 11 (November 2011): 2055–2060, doi:10.1016/j.neurobiolaging.2009.12.006.

17. Cohen-Manheim, I., et al., “Increased Attrition of Leukocyte Telomere Length in Young Adults Is Associated with Poorer Cognitive Function in Midlife,” European Journal of Epidemiology 31, no. 2 (February 2016), doi:10.1007/s10654-015-0051-4.

18. King, K. S., et al., “Effect of Leukocyte Telomere Length on Total and Regional Brain Volumes in a Large Population-Based Cohort,” JAMA Neurology 71, no. 10 (October 2014): 1247–1254, doi:10.1001/jamaneurol.2014.1926.

19. Honig, L. S., et al., “Shorter Telomeres Are Associated with Mortality in Those with APOE Epsilon4 and Dementia,” Annals of Neurology 60, no. 2 (August 2006): 181–187, doi:10.1002/ana.20894.

20. Zhan, Y., et al., “Telomere Length Shortening and Alzheimer Disease – A Mendelian Randomization Study,” JAMA Neurology 72, no. 10 (October 2015): 1202–1203, doi:10.1001/jamaneurol.2015.1513.

21. If you would like, you can contribute to studies on brain aging and disease without having to get your brain scanned, or even show up in person. Dr. Mike Weiner, a noted researcher at UCSF who leads the largest cohort study of Alzheimer’s disease worldwide, developed the online Brain Health Registry to help speed up recruitment for clinical trials and research studies. By joining the Brain Health Registry you answer questionnaires and take online cognitive tests. We are helping him study the effects of stress on brain aging. You can find the registry at http://www.brainhealthregistry.org/

Âåðíóòüñÿ ê ïðîñìîòðó êíèãè Ïåðåéòè ê Îãëàâëåíèþ Ïåðåéòè ê Ïðèìå÷àíèþ