Двигатели жизни. Как бактерии сделали наш мир обитаемым - читать онлайн книгу. Автор: Пол Фальковски cтр.№ 24

читать книги онлайн бесплатно
 
 

Онлайн книга - Двигатели жизни. Как бактерии сделали наш мир обитаемым | Автор книги - Пол Фальковски

Cтраница 24
читать онлайн книги бесплатно

В природе существует четыре стабильных изотопа серы, и именно на основании их распределения в геологической летописи за последние 3,5 млрд лет мы можем судить о том, когда атмосфера Земли стала кислородной. Более легкие изотопы серы, содержащие меньше нейтронов, вибрируют с большей частотой, нежели более тяжелые. Вследствие более высокой частоты вибрации они чаще сталкиваются с соседними атомами и, следовательно, по сравнению с тяжелыми изотопами имеют больше шансов образовать химические связи с другими элементами. При помощи масс-спектрометра – прибора, способного с высокой точностью определять распространенность того или иного изотопа, – трое ученых, Джеймс Фаркухар, Хуймин Бо и Марк Тименс, в 2000 году показали, что изотопы серы в осадочных породах имеют очень необычное распределение. В слоях, образованных более 2,4 млрд лет тому назад (включая упомянутые австралийские породы, содержащие гопаноидные биомаркеры цианобактерий), изотопный состав серы достаточно случаен; нельзя выделить какую-либо закономерность распределения изотопов в соответствии с их массой. Однако в период начиная с 2,4 млрд лет тому назад и до настоящего времени изотопный состав, несомненно, зависит от числа нейтронов в элементе, то есть поведение элементов определяется их массой: более тяжелые изотопы серы, имеющие больше нейтронов, встречаются в составе минералов горных пород реже, чем более легкие изотопы. Таким образом, можно сделать вывод о том, что приблизительно 2,4 млрд лет тому назад произошло некое событие, изменившее способ образования изотопами серы химических связей. Однако какое отношение все это имеет к кислороду?

Значительная часть серы, находящейся в горных породах, изначально образовалась в вулканах в виде газа сероводорода (SO2). Сероводород – бесцветный газ с резким запахом, который можно почувствовать за несколько километров вокруг целлюлозно-бумажных комбинатов, поскольку для размягчения древесины при производстве целлюлозы часто используются содержащие серу вещества. Химические связи в молекулах сероводорода могут быть разрушены высокоэнергетическим ультрафиолетовым излучением Солнца. Разрушая молекулярные связи, ультрафиолетовое излучение не отличает один изотоп от другого. В результате изотопный состав пород получается таким же, каким был в изначальном материале.

Ультрафиолетовое излучение невидимо для человеческого глаза, однако вызывает ожоги кожи и, если мы подвергаемся облучению слишком долго, может вызывать мутации клеток нашей кожи, приводящие к раковым заболеваниям. Хотя в современном мире некоторая часть ультрафиолетового излучения Солнца доходит до земной поверхности, большая его часть задерживается – поглощается в верхних слоях атмосферы – стратосфере – другим газом, состоящим из трех атомов кислорода. Этот газ называется озоном. Единственный известный механизм, способный привести к образованию озона в стратосфере планеты, требует присутствия в атмосфере свободного кислорода.

Следовательно, изменение закономерностей распределения изотопов серы в горных породах можно интерпретировать как появление около 2,4 млрд лет тому назад в стратосфере нашей планеты озонового слоя. Такое объяснение предполагает, что кислородный фотосинтез цианобактерий в конечном счете привел к увеличению содержания кислорода в атмосфере. Летопись, запечатленная в изотопах серы, недвусмысленно показывает, что мир прошел через некую ключевую переходную точку: ранее временной отметки 2,4 млрд лет тому назад в атмосфере практически не было свободного кислорода, а потом он появился. Геологи поэтически (и даже несколько драматически) назвали этот переход «Кислородной катастрофой». На самом деле эта временная точка «размазана» по периоду длительностью сто миллионов лет или больше. Судя по всему, в истории Земли это событие было исключительным – в том смысле, что больше оно не повторялось. Мы можем сделать такое заключение, поскольку изотопы серы в геологическом разрезе от 2,4 млрд лет тому назад до настоящего времени тщательно разделены на фракции в соответствии с массами изотопов, однако до временной отметки 2,4 млрд лет тому назад фракционирование изотопов серы никак не зависит от их массы. Такая интерпретация изотопов серы предполагает, что на протяжении последних 2,4 млрд лет кислород входил в состав атмосферы нашей планеты. Концентрация кислорода сразу после переходного момента была довольно низкой – вероятно, меньше 1 % от настоящего уровня, и этого было недостаточно для эволюции животных.

Однако для того чтобы обеспечить присутствие кислорода в планетарной атмосфере, необходимо нечто большее, чем эволюция фотосинтезирующего наномеханизма. Чтобы этот газ получил распространение, огромные количества микроорганизмов, наделенных фотосинтезирующим наномеханизмом, должны погибнуть и затем оказаться включенными в состав горных пород. Смерть фотосинтезирующих микроорганизмов на протяжении сотен миллионов лет в конечном счете вымостила дорогу нашему с вами существованию. Давайте рассмотрим этот кажущийся парадокс: почему смерть клеток, производящих кислород, необходима для того, чтобы кислород получил распространение в атмосфере?

Возьмем кислород, которым мы дышим в настоящий момент. Концентрация кислорода в земной атмосфере была неизменной на протяжении всей нашей жизни, а также жизней наших пра-пра-пра-пра-пра-пра– (и вы можете вставить на свое усмотрение еще множество «пра-») дедов. Она составляет 21 % общего объема воздуха Земли и оставалась в высшей степени постоянной в течение сотен тысяч, если не миллионов, лет. Откуда мы это знаем? Да просто мы можем измерить содержание кислорода в пузырьках воздуха в ледяных кернах, отобранных при бурении антарктических ледяных щитов, и с большой точностью и уверенностью определить, что содержание кислорода оставалось в целом неизменным последние 800 тысяч лет. На протяжении этого времени выработка кислорода всеми водорослями и растениями Земли уравновешивалась поглощением кислорода в процессе дыхания всех животных и микроорганизмов. Для того чтобы концентрация кислорода в земной атмосфере изменилась, что-то должно нарушить баланс между фотосинтезом и респирацией.

Однако 2,4 млрд лет тому назад еще не существовало ни растений, ни животных. Собственно, не существовало ничего, кроме микроорганизмов. Вся жизнь на Земле в целом ограничивалась океанами и другими водоемами. Фотосинтезирующие цианобактерии с их кислородобразующими наномеханизмами вырабатывали кислород не ради него самого; кислород был побочным продуктом фотосинтетического процесса. Организмы расщепляют воду, чтобы получить водород, а водород они используют для производства органических соединений. Кислород представляет собой окисленную воду, а органические соединения по существу есть восстановленный углекислый газ и газообразный азот. Органические соединения являются источником энергии, но также могут быть использованы и для производства сахаров, аминокислот, липидов и нуклеиновых кислот; коротко говоря, организмы используют органические соединения для строительства новых клеток. За неимением более простого термина я буду называть органические соединения, производимые клетками, «клеточным веществом». В результате процесса фотосинтеза водород, взятый из воды, перемещается к углекислому газу и азоту для производства клеточного вещества, которое клетки накапливают и которое в конечном счете позволяет им воспроизводиться. При дыхании же организмы используют органические соединения для выработки энергии при отсутствии солнечного света, а также для строительства новых клеток. Дыхание отнимает водород у углерода и прибавляет его к кислороду, высвобождая воду и углекислый газ в качестве отходов. Мы интуитивно понимаем это, когда дышим на холодное стекло – на нем конденсируется водяной пар. При дыхании водород из пищи, которую мы едим, добавляется к кислороду из воздуха, которым мы дышим, в результате чего образуется вода. По сути, вся наша планета существует за счет цикла расщепления воды при фотосинтезе для образования кислорода и производства воды при дыхании.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию