В городе работают две больницы. В большой больнице каждый день рождается примерно 45 младенцев, в маленькой больнице каждый день рождается примерно 15 младенцев. Как известно, около 50% всех новорожденных – мальчики. Однако точное соотношение меняется изо дня в день.
Иногда мальчиков больше 50%, иногда меньше.
В течение года каждая больница отмечает дни, когда мальчиков рождается более 60% от всех новорожденных. В какой больнице, по-вашему, таких дней больше?
В большой (21)
В маленькой (21)
Примерно одинаково (то есть разница менее 5%) (53)
Цифры в скобках показывают число студентов, выбравших указанный ответ.
Большинство участников решили, что вероятность рождения более 60% мальчиков будет одинаковой для маленькой и большой больницы , видимо, потому что эти события описаны одной и той же статистикой и, таким образом, одинаково представляют общую популяцию. Однако теория выборок утверждает: дней, когда мальчиков рождается свыше 60%, ожидается значительно больше в маленькой больнице, чем в большой, поскольку распределение в больших выборках будет реже отклоняться от 50%. Очевидно, это фундаментальное понятие статистики не входит в набор интуитивных навыков.
Похожее игнорирование размера выборки обнаружено при оценке апостериорной вероятности, то есть вероятности того, что выборка взята из той или иной популяции, а не из другой. Рассмотрим следующий пример.
Представьте сосуд, наполненный шарами, из которых 2/3 одного цвета, а 1/3 – другого. Один человек, вытащив из сосуда 5 шаров, обнаружил 4 красных и один белый. Другой человек вытащил 20 шаров и насчитал 12 красных и 8 белых. Кто из двух участников будет более уверен, что в сосуде 2/3 красных шаров и 1/3 – белых, а не наоборот? Какие шансы назовет каждый из участников?
В этой задаче правильные апостериорные шансы составляют 8 к 1 для выборки 4:1 и 16 к 1 – для выборки 12:8, при условии равных априорных вероятностей. Однако большинству людей кажется, что первая выборка представляет более сильное доказательство гипотезы о преобладании красных шаров в сосуде, потому что доля красных шаров в первой выборке больше, чем во второй. Опять-таки, на интуитивный выбор влияет соотношение в выборке и совсем не влияет размер выборки, который играет важнейшую роль в определении реальных апостериорных вероятностей [5]. Кроме того, интуитивные оценки апостериорных шансов оказываются далеко не столь экстремальными, как реальные величины. Недооценка влияния доказательств постоянно наблюдается в задачах подобного типа [6]. Это явление получило название «консерватизм».
Неверные представления о шансах. Люди ожидают, что последовательность событий, генерируемых случайным процессом, является существенной характеристикой процесса, даже если последовательность коротка. Например, бросая монету (орел или решка), человек рассматривает итоговую последовательность О-Р-О-Р-Р-О как более вероятную, чем последовательность О-О-О-Р-Р-Р, которая выпадает редко, а также более вероятной, чем последовательность О-О-О-О-Р-О, которая не отражает равновероятность исходов при подбрасывании монеты [7]. Таким образом, люди ожидают, что существенные характеристики процесса будут представлены не только глобально в полной последовательности, но и локально в каждой ее части. На самом же деле локально репрезентативная последовательность систематически отклоняется от ожидаемых вероятностей: в ней слишком много чередований и слишком мало повторений. Еще одно следствие веры в локальную репрезентативность – хорошо известная ошибка игрока. К примеру, заметив длинную последовательность выпадения красного на рулетке, большинство людей считают, что настала очередь чер ного, поскольку выпадение черного даст более репрезентативную последовательность, чем еще одно появление красного. Шанс часто рассматривается как саморегулирующийся процесс, в котором отклонение в одну сторону вызывает отклонение в противоположную сторону – для поддержания равновесия. На самом деле отклонения не «корректируются» по мере развития процесса; они просто сглаживаются.
Неверные представления о шансах – удел не только неискушенных людей. Проведенные исследования статистической интуиции опытных исследователей-психологов [8] выявили упорное заблуждение, которое можно назвать «закон малых чисел», – согласно ему даже маленькие выборки высоко репрезентативны для своих популяций. Ответы исследователей отражают ожидание того, что валидная гипотеза о популяции даст статистически значимые результаты в выборке любого размера. Как выяснилось, исследователи слишком доверяли результатам по маленьким выборкам и сильно переоценивали воспроизводимость таких результатов. В условиях реального исследования подобные искажения ведут к выборкам неадекватного размера и чересчур смелой интерпретации результатов.
Игнорирование предсказуемости. Людям иногда приходится делать численные прогнозы – например, предсказывать будущий курс акций, спрос на товар или результат футбольного матча. Эти прогнозы часто делаются на основе репрезентативности. Например, представьте, что кому-то предлагают описание компании и просят дать прогноз будущей прибыли. Если описание компании очень благоприятное, высокие прибыли покажутся репрезентативными для этого описания; если описание среднее, наиболее репрезентативными сочтут средние показатели. На благоприятность описания не влияет степень его надежности или то, насколько оно позволяет делать точные прогнозы. Значит, если прогноз делают на основании только благоприятности описания, то предсказания игнорируют надежность доказательств и ожидаемую точность прогноза.
Такой способ выноси ть суждения идет вразрез со статистической теорией, в которой крайность и диапазон прогнозов сдерживаются соображениями предсказуемости. Когда предсказуемость равна нулю, во всех случаях должны быть даны одинаковые предсказания. Например, если в описании компаний нет информации, связанной с прибылями, тогда правильно будет дать одинаковый прогноз (например, среднюю прибыль) для всех компаний. Если предсказуемость идеальна, предсказанные величины, разумеется, совпадут с реальными, а диапазон прогнозов совпадет с диапазоном итогов. В общем, чем выше предсказуемость, тем шире диапазон предсказанных величин.
Некоторые исследования числовых прогнозов показали, что интуитивные предсказания нарушают это правило и что люди редко учитывают – или вовсе не учитывают – соображения предсказуемости [9]. В одном из исследований участникам предлагалось несколько абзацев, в каждом из которых описывались действия учителя-практиканта во время урока. Некоторых участников просили оценить (в процентилях) качество описанного в тексте урока относительно конкретной популяции. Других участников просили предсказать (тоже в процентильных баллах) успехи данного практиканта через пять лет после этого урока. Суждения, высказанные в данных условиях, оказались идентичны, то есть прогноз по отдаленному критерию (успешность учителя через пять лет) совпадал с оценкой информации, на которой основывался прогноз (качество описанного урока). Студенты, дававшие ответы, разумеется, знали, что предсказуемость преподавательской компетентности по одному-единственному уроку пятилетней давности ограничена; тем не менее их прогнозы были столь же радикальными, как и их оценки.