Воображаемая жизнь - читать онлайн книгу. Автор: Джеймс Трефил, Майкл Саммерс cтр.№ 52

читать книги онлайн бесплатно
 
 

Онлайн книга - Воображаемая жизнь | Автор книги - Джеймс Трефил , Майкл Саммерс

Cтраница 52
читать онлайн книги бесплатно

Атом углерода имеет шесть положительно заряженных протонов в своем ядре, и шесть вращающихся вокруг ядра отрицательно заряженных электронов, чтобы уравновесить этот положительный заряд. О том, где могут находиться эти электроны, законы квантовой механики говорят нам две вещи:

• Электроны могут занимать так называемые энергетические уровни, расположенные на некоторых строго ограниченных и определённых расстояниях от ядра.

• На каждом энергетическом уровне есть место только для определённого, строго ограниченного количества электронов.

В целом, на ближайшем к ядру энергетическом уровне есть место для двух электронов, в то время как на следующих двух уровнях может находиться до восьми электронов на каждом. (У более крупных атомов больше электронов, и они занимают более высокие уровни. На этих уровнях также находится строго определённое количество электронов, но точные значения вычислить сложнее.) Это означает, что в атоме углерода на самом нижнем уровне находятся два из шести электронов, и в то же время на следующем уровне находятся остальные четыре. Именно самые внешние электроны (они называются валентными электронами) образуют связи с другими атомами для создания молекул. Представьте себе, что каждый из четырёх внешних электронов — это своего рода липучка на поверхности атома, позволяющая атому углерода сцепляться с другими атомами, в том числе с другими атомами углерода [12].

Когда атомы углерода соединяются друг с другом, они образуют длинные цепочки, кольца, сложные петли и множество иных форм, которые мы наблюдаем в молекулах, поддерживающих жизнь на Земле. Иногда они отдают для связи с другим атомом углерода сразу два своих валентных электрона — представьте, что два атома склеены двумя парами липучек вместо одной. Эти так называемые двойные связи играют важную роль в создании сложности, которую мы наблюдаем в молекулах на основе углерода на Земле.

Чрезвычайно важной молекулой на основе углерода является ДНК, которая позволяет живым существам на Земле передавать информацию от одного поколения к другому. Она делает это с помощью четырёх молекул, называемых азотистыми основаниями. Эти молекулы обычно обозначаются первой буквой их названий — аденин (A), гуанин (G), цитозин (C) и тимин (T) — и их последовательность в ДНК организма представляет собой сообщение, передаваемое от поколения к поколению. Мы утверждаем, что у любой жизни, основанной на химических веществах, должно быть нечто, играющее роль ДНК — что-то такое, что может передавать информацию от одного поколения другому. Очевидно, что это «что-то» не обязательно должно быть тем же самым, что и наша ДНК. И действительно, учёные смогли создать в лаборатории ДНК, которая содержит кодирующие молекулы, отличные от упомянутых выше, и это позволяет предположить, что в других мирах могли возникнуть другие молекулы, переносящие информацию.

История кремния

Подход многих учёных к решению вопроса об альтернативной жизни состоит в том, чтобы найти в живых системах на Земле какую-то функцию, которую сейчас выполняют молекулы на основе углерода, а затем узнать, могут ли выполнять ту же функцию молекулы на основе иного химического элемента. Это такой же хороший способ начать нашу дискуссию, как и любой другой, хотя ниже мы утверждаем, что он может быть полон всякого рода ограничений.

Однако прежде, чем перейти к подробному обсуждению конкретных типов атомов, мы должны уделить чуточку внимания одной вещи: относительному изобилию химических элементов в природе. Очевидно, что более обычный в природе атом с большей вероятностью послужит основой для жизни, чем более редкий — уже хотя бы потому, что первый более доступен для химических реакций, ведущих к образованию жизни. Следовательно, в дальнейшем мы сосредоточим наше внимание на обычных элементах и проигнорируем возможность жизни, основанной на относительно редких атомах.

Если мы взглянем на нашу Солнечную систему или на галактику в целом, то обнаружим, что самыми распространёнными элементами являются водород и гелий, за которыми следуют кислород и углерод. Чтобы подчеркнуть то, что будет важно в ходе нашего последующего обсуждения, скажем, что на каждый атом кремния в Солнечной системе приходится около 10 атомов углерода. Один балл в пользу углеродных шовинистов.

Однако если мы рассмотрим только Землю, ситуация будет совершенно иной. Формирование планет земной группы включало процесс сортировки — например, на Земле почти нет гелия, хотя во Вселенной он встречается в изобилии. Мы считаем, что значительная часть углерода, который мог бы пойти на формирование Земли, вместо этого связалась в виде летучих соединений, которые были выброшены из внутренней области Солнечной системы новорождённым Солнцем. По сути, оказывается, что на Земле на каждый атом углерода приходится около 30 атомов кремния — полная противоположность их относительному содержанию в Солнечной системе в целом. Один балл в пользу парней, топящих за кремний, хотя значительная часть кремния на Земле заключена в минералах глубоко под её поверхностью и, следовательно, недоступна жизни.

Когда мы получим представление о распространённости химических элементов, реальный вопрос о жизни, не похожей на нас, сводится к следующему: существуют ли атомы, отличные от атомов углерода, которые могли бы обеспечивать такую сложность молекул, которую мы наблюдаем у земной жизни? То есть, могут ли эти другие атомы образовывать цепочки, кольца и сложные структуры, как это делает углерод, чтобы заложить основу для существования широкого спектра молекул, необходимых для жизни? Это, как мы указывали выше, ведёт нас к кремнию.

Самый простой способ наглядно представить это — вспомнить о втором правиле квантовой механики, приведённом выше. Представьте, что вы начинаете с углерода, а затем добавляете восемь электронов (конечно же, сопровождая это аналогичным увеличением числа протонов в ядре). Это даст нам атом, который, как и углерод, имеет четыре валентных электрона, поскольку из новых электронов четыре заполнят до конца второй энергетический уровень, и останется ещё четыре для следующего, самого верхнего уровня, на котором они могут образовывать связи. И действительно, элемент, у которого на восемь электронов больше, чем у углерода, — это кремний, расположенный в периодической таблице прямо под углеродом.

Это упражнение объясняет, почему формы жизни на основе кремния на протяжении десятилетий были неотъемлемой частью научной фантастики. С химической точки зрения кремний — это элемент, обладающий наибольшим сходством с углеродом, и, как мы уже отмечали, он довольно распространён во Вселенной. Однако, сделав это замечание, мы должны отметить, что между углеродом и кремнием существует фундаментальная разница. Поскольку валентные электроны кремния находятся на третьем энергетическом уровне, тогда как электроны углерода находятся на втором, атом кремния крупнее своего углеродного аналога. Химики предположили, что именно это различие так затрудняет образование длинных цепочек из атомов кремния. Это означает малую вероятность того, что в жизни на основе кремния цепочки атомов кремния смогут играть ту же роль, что и молекулы типа ДНК в жизни на углеродной основе: «липучки» расположены слишком далеко друг от друга, чтобы два атома кремния могли образовать больше одной связи друг с другом. Таким образом, значительная часть сложности, которую мы наблюдаем в молекулах на основе углерода, просто недоступна кремнию. Это отражается в таком факте: известно, что специалисты в области органической химии используют для описания самых сложных молекул на основе кремния такие слова, как «монотонный».

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию