Как мы ориентируемся. Пространство и время без карт и GPS - читать онлайн книгу. Автор: Маура О’Коннор cтр.№ 21

читать книги онлайн бесплатно
 
 

Онлайн книга - Как мы ориентируемся. Пространство и время без карт и GPS | Автор книги - Маура О’Коннор

Cтраница 21
читать онлайн книги бесплатно

Идея Гленберга не в состоянии в полной мере объяснить существование столь большого временного промежутка между началом самостоятельного движения в первый год жизни человека и надежным сохранением воспоминаний, которое начинается приблизительно с шестилетнего возраста. Он предположил, что гиппокамп, настроенный на окружающий мир при ползании, вынужден переучиваться после того, как мы начинаем ходить. Но возможно и то, что задержка обусловлена потребностью в опыте, а также тем, в какой мере тот необходим. Требуется довольно много времени, чтобы исследовать окружающий мир и начать формировать сложные когнитивные карты и полноценную систему памяти в гиппокампе, по сложности сравнимую с системой взрослого человека. Собственно, возраст перехода к самостоятельному движению, похоже, не столь важен, как степень вовлеченности ребенка в исследование окружающего мира. В 2014 г. голландские ученые выяснили, что в возрасте четырех лет дети, посвящавшие больше времени исследованию мира, имели более развитую пространственную память, и у них наблюдалась позитивная корреляция с подвижным интеллектом – способностью к решению проблем, выявлению закономерностей и логике. «Ваш годовалый ребенок умеет ориентироваться в квартире, но ему не слишком часто выпадает возможность выходить из нее в парк, – объяснял мне Гленберг. – Потребуется огромный опыт прогулок, чтобы развился этот достаточно сложный набор клеток, которые могут служить хорошей основой для памяти».

В 1999 г. группа ученых из Института биологических исследований Солка в Калифорнии под руководством Расти Гейджа выяснила, что физические упражнения способствуют нейрогенезу в гиппокампе взрослых людей, в частности в зубчатой извилине – той зоне, в которой в гиппокамп входит большая часть связей с другими областями мозга и которая участвует в формировании эпизодической памяти. Недавно трое исследователей из Национальных институтов здравоохранения США, изучавшие старение, сравнили нейроны взрослых мышей, которые провели месяц в клетке с беличьим колесом, с нейронами мышей, которые бегали в колесе неделю, и с нейронами животных, живших в клетке без колеса. В мозге мышей из обеих групп с колесом были обнаружены новые нейроны, а длина дендритов нервных клеток оказалась больше. Ученые решили, что бег, возможно, способствует кодированию пространственной информации, усиливая генерацию нейронов и перестраивая нейронные цепи.

Тот факт, что на развитие гиппокампа влияют такого рода активность и опыт, указывает на его невероятную пластичность, что очень важно для таких сфер, как уход за детьми, образование и лечение когнитивных нарушений. «Это чрезвычайно волнующий факт, потому что созревание мозга часто обусловливают временем и генетической программой, – объяснял мне Травалья. – Мы же демонстрируем, что развитие мозга идет не по фиксированной программе, а определяется опытом».


В 1940-х гг. психологи Жан Пиаже и Бербель Инхельдер предлагали детям «задачу о трех горах». Они помещали куклу на разные области маленького макета с тремя горами и просили ребенка выбрать одну из нескольких картинок, сопоставив ее с тем, как кукла видит гору с того или иного места. В возрасте четырех лет большинство детей не могли представить, что кукла видит иначе, чем они сами, и психологи сделали вывод: маленькие дети руководствуются более примитивной эгоцентричной перспективой, предшествующей логическому мышлению. И только позже, годам к девяти-десяти, дети, по мнению психологов, переключались на аллоцентрическое представление, чтобы закодировать евклидовы объективные взаимоотношения между ориентирами и предположить, как выглядят множественные объекты по отношению друг к другу.

Последующие исследования показали ошибочность этого классического представления о последовательности развития от эгоцентрической перспективы к аллоцентрической. Ньюком продемонстрировала, что маленькие дети в возрасте года и девяти месяцев могут аллоцентрически точно представлять взаимное расположение объектов. В 2010 г. в Journal of Experimental Child Psychology норвежские и французские психологи опубликовали результаты исследования, в котором 77 учеников начальной школы проходили тест на виртуальном лабиринте. Выяснилось, что все пяти-, семи- и десятилетние дети использовали для решения задачи последовательную эгоцентрическую стратегию, однако все они, даже самые младшие, могли применять и аллоцентрическую. Тем не менее чем старше был ребенок, тем более спонтанно он мог переходить к аллоцентрической перспективе и использовать ее с большей точностью; десятилетние школьники могли сориентироваться в самом начале решения задачи и сформировать абстрактный образ лабиринта – «вид сверху» – в точности как взрослые.

Это позволяет предположить, что маленькие дети способны использовать аллоцентрическую стратегию, но в период с пяти до десяти лет ее природа постепенно меняется. В десять лет объем гиппокампа у разных детей может поразительно отличаться. Исследователи выяснили, что физически развитые дети имели больший объем гиппокампа, чем их менее активные сверстники, и это указывает на взаимосвязь между аэробными упражнениями и структурой мозга детей. Более того, эти структурные отличия, по всей видимости, влияют на функции. Те десятилетние дети, которые были более активны и находились в лучшей физической форме, лучше справлялись с задачами на запоминание.

Мы не единственные животные, у которых проявляется пластичная природа гиппокампа и его связь с когнитивными способностями. У нечеловекообразных приматов объем гиппокампа однозначно коррелирует с решением пространственных и непространственных задач, а также может предсказать вероятность их успешного решения. Сьюзен Шульц и Робин Данбар, ученые из Оксфордского университета, изучили 46 разных видов приматов, в том числе горилл, лемуров и макак. Они дали отдельным особям восемь различных заданий, предназначенных для проверки обучения, памяти и познания пространства. Виды приматов с большим объемом гиппокампа лучше справлялись с этими задачами. Выяснилось, что относительный размер мозга коррелирует с социальным научением и использованием орудий, формированием коалиций, способностью обманывать и размером социальных групп, то есть со всеми аспектами когнитивных способностей высшего порядка, так называемых управляющих функций, – это способность организовывать мысли и действия, направлять себя к достижению целей. Возможно, необходимость в появлении усложняющихся управляющих функций была одним из давлений отбора, которые привели к увеличению мозга приматов (и в конечном счете к тому, что появились мы).

Шульц и Данбар также обнаружили, что у птиц, которые прячут еду в разных местах, а через несколько дней или даже месяцев возвращаются за ней, относительный размер гиппокампа больше, чем у других видов. В одном из предыдущих исследований, в конце 1980-х гг., они выбрали 35 разных видов и подвидов птиц из отряда воробьинообразных (в который входит более половины всех видов птиц в мире), использующих пальцы для того, чтобы держаться на ветке, и препарировали мозг 52 экземпляров, взятых из живой природы. Некоторые птицы принадлежали к тем видам, которые делают запасы еды, а некоторые ограничивались добычей корма. Исследователи хотели найти ответ на вопрос: требует ли запасание еды повышенных затрат памяти? Обладают ли птицы, делающие запасы, некими особыми способностями, связанными с пространственной памятью? И может ли это отражаться на объеме их мозга? Шульц и Данбар обнаружили, что у черноголовой гаички, запасающей еду в лесу, гиппокамп занимает на 31 % больший объем, чем у ее близкой родственницы, большой синицы, которая выискивает корм.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию