Охотники за микробами. Как антибиотики, санация и дезинфекция ослабляют иммунитет и приводят к развитию новых заболеваний - читать онлайн книгу. Автор: Мартин Блейзер cтр.№ 7

читать книги онлайн бесплатно
 
 

Онлайн книга - Охотники за микробами. Как антибиотики, санация и дезинфекция ослабляют иммунитет и приводят к развитию новых заболеваний | Автор книги - Мартин Блейзер

Cтраница 7
читать онлайн книги бесплатно

Например, я могу вырастить культуру распространенной кишечной бактерии Е. coli [7, см. с. 26], поместив немного существующих клеток в чашку с питательным веществом. За ночь в теплом инкубаторе она может дать до 10 миллиардов новых клеток. Вся чашка будет покрыта настолько плотным ковром, что отдельные колонии различить невозможно. А теперь предположим, что я сделал такой же посев в другую чашку, но добавил стрептомицин – антибиотик, убивающий большинство штаммов Е. coli. На следующее утро я увижу всего десяток изолированных колоний размером с миниатюрный прыщик, в каждой из которых будет от силы миллион клеток. Каждое скопление происходит от одной-единственной, которая пережила контакт с антибиотиком, а затем размножилась. Как объяснить разницу в результатах между посевом со стрептомицином и без него?

Во-первых, мы видим, что антибиотик сработал. Вместо 10 миллиардов клеток всего 10 миллионов, то есть в тысячу раз меньше. Можно сказать, что антибиотик убил 99,9 % клеток, позволив выжить лишь малому количеству. Но все же лекарство сработало не полностью. Некоторым удалось выжить. Так почему же одни клетки уцелели, а другие – нет? Просто повезло? И да и нет.

Везение состоит в том, что клетки, резистентные к стрептомицину, имеют вариант гена, необходимого всем Е. coli для выработки белков, без которых они не смогут существовать. Он не очень эффективен, но его хватает, чтобы помочь резистентным штаммам выжить и произвести потомство. Остальные же умирают, потому что антибиотик вмешивается в действие обычной версии того же белка.

Генетические варианты, обеспечивающие это свойство, появляются интересным образом. Вполне возможно, что у некоторых клеток (в данном примере – десяти) из исходной культуры в миллиард был подобный вариант гена. Эти клетки существовали изначально. Описывая эксперимент в дарвиновских терминах, можно сказать, что стрептомицин «отбирает» в популяции варианты с резистентной формой гена, а вот отсутствие антибиотика в окружающей среде «отбирает» более эффективную, но уязвимую к нему обычную форму. Количество Е. coli с данным свойством зависит от того, как часто и как давно они контактировали со стрептомицином. Это простой пример естественного отбора, но конкуренция вечна. Пусть победит сильнейший микроб.

Одни конкурируют с другими, охотятся на них и даже эксплуатируют, но есть и бесчисленные примеры сотрудничества и синергии. Например, если кишечная бактерия Bacteroides может очистить химическое вещество в окружающей среде, мешающее развитию Е. coli, то это выгодно второй. Одностороннее полезное отношение такого рода называется комменсализмом.

Еще более сильным бывает взаимодействие, если оно выгодно обеим сторонам. Представьте, что выделения Е. coli служат хорошим источником пищи для Bacteroides. В таком случае два этих вида будут собираться в одной среде. Оба всего лишь следуют собственной программе, но при этом помогают друг другу. Это симбиоз.

В иных условиях создают симбиоз другие бактерии. Например, в быстром ручье бактерия А поедает выделения бактерии Б, а также прилипает к острым краям камней. Бактерия В прилипать не умеет, но может прицепляться к бактерии А. Бактерия Б производит вещество, питательное для В. Вот вам и ситуация, где бактерии А, Б и В будут встречаться вместе, причем к выгоде для всех трех.

За более чем 4 миллиарда лет эволюции бактерий, учитывая, что некоторые делятся каждые двенадцать минут, а также их астрономическое количество, вариантов было практически бесконечное множество. Благодаря этому постоянному процессу появились отдельные бактерии, населившие все доступные ниши на Земле.

Иногда они стабильно живут вместе, формируя консорциум. Подобные кооперативные группы в изобилии встречаются в окружающей среде – в почве, ручьях, гниющих бревнах, горячих источниках – практически везде, где есть жизнь. Самое древнее однозначное доказательство существования жизни – это окаменевшие цианобактериальные маты возрастом 3,5 миллиарда лет, найденные в Австралии. Консорциумы, состоявшие из огромных лежащих друг на друге листов, – полноценные миниатюрные экосистемы. Скорее всего, одни занимались фотосинтезом, другие дышали кислородом, третьи осуществляли ферментацию, четвертые ели необычные неорганические соединения. То, что для одного вида – еда, для другого – яд. Собравшись в слои и объединив усилия, они смогли обеспечить выживание для всех.

Существуют микроорганизмы, которые умеют создавать вокруг себя слои вещества, похожего на желатин. Этот плотный гель называется биопленкой. Состав бывает разным, но он защищает бактерию от высыхания, избыточной жары, нападения иммунной системы. Его существование объясняет присутствие бактерий в самых жестоких условиях.

Микробы образуют консорциумы и огромные сети сотрудничества не только в почве, океане или каменистых поверхностях, но и в животных. В человеческом теле это главные персонажи моей истории про «пропавших микробов». Великий биолог Стивен Джей Гоулд дал нам точку отсчета для всей земной биологии, написав:

Мы живем в эпоху бактерий (как было вначале, как есть сейчас и как должно быть всегда, пока миру не настанет конец…) [8, см. с. 26]

Вот контекст человеческой жизни – и передний, и задний ее план.

Примечания

1. «…и вы сотрете всю человеческую историю» (см. с. 18): J. McPhee, Basin and Range, book 1 in Annals of the Former World (New York: Farrar, Straus & Giroux, 1998).

2. «…за несколькими исключениями, лишь подтверждающими правило»(см. с. 18): Н. N. Schulz et al., «Dense populations of a giant sulfur bacterium in Namibian shelf sediments,» Science 284 (1999): 493-95. Но такие большие микробы – аномалия в мире, где доминируют микроскопические формы.

3. «…между нами и кукурузой» (см. с. 19): N. Расе, «A molecular view of microbial diversity and the biosphere,» Science 276 (1997): 734– 40. Карл Вёзе, Норман Пэйс и другие считают, что бактерии – первая форма жизни, зародившаяся на Земле.

4. «…240 миллиардов африканских слонов» (см. с. 20): W. В. Whitman et al., «Prokaryotes: The unseen majority,» Proceedings of the National Academy of Sciences 95 (1998): 6578-83; J. S. Lipp et al., «Signifi cant contribution of Archaea to extant biomass in marine subsurface sediments,» Nature 454 (2008): 991-94; M. L. Sogin et al., "Microbial diversity in the deep sea and the underexplored ’rare biosphere,’ " Proceedings of the National Academy of Sciences 103(2006): 12115-20.

5. «…отбор в действии» (см. с. 21): Бактерии, поедающие пластик. T. Suyama et al., «Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics,» Applied and Environmental Microbiology 64 (1998): 5008-11; E. R. Zettler et al., «Life in the ’plastisphere’: microbial communities on plastic marine debris,» Environmental Science and Technology 47 (2013): 7137-46.

6. «…воды и бактерий – множества бактерий» (см. с. 22): Т. О. Stevens and J. P. McKinley, «Lithoautotrophic microbial ecosystems in deep basalt aquifers,» Science 270 (1995): 450-54.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию