Шесть невозможностей. Загадки квантового мира - читать онлайн книгу. Автор: Джон Гриббин cтр.№ 18

читать книги онлайн бесплатно
 
 

Онлайн книга - Шесть невозможностей. Загадки квантового мира | Автор книги - Джон Гриббин

Cтраница 18
читать онлайн книги бесплатно

Эта двойственность отчетливо проявляется при расчете вероятностей в области квантовой механики. Свойства квантовой системы описываются математическим выражением, которое называется вектором состояния и, в свою очередь, описывается волновым уравнением Шрёдингера. В общем случае это комплексное число, то есть число, в которое входит корень квадратный из минус единицы (i). Если a и b – обычные числа, то (a + ib), как и (aib), будет комплексным числом. Расчет вероятности, необходимый для определения шанса обнаружить, например, электрон в определенном месте в определенное время, сводится к вычислению квадрата вектора состояния, соответствующего данному конкретному состоянию электрона.

Но вычисление квадрата комплексной переменной не означает просто умножение ее на саму себя. Вместо этого вы должны создать еще одну переменную – зеркальное отражение первой, называемое комплексно-сопряженной величиной, – поменяв знак перед мнимой частью: + станет –, и наоборот. Таким образом, (aib) и (a + ib) – комплексно-сопряженные величины. Для расчета вероятности эти два комплексных числа перемножаются между собой. Но для уравнений, которые описывают изменение системы во времени, акт изменения знака мнимой части и нахождения комплексно-сопряженного числа эквивалентен смене направления течения времени на противоположное! Базовое уравнение вероятности, предложенное Максом Борном еще в 1926 г., содержит явную отсылку к природе времени и к возможности существования двух типов уравнений Шрёдингера, одно из которых описывает опережающие волны, а другое – запаздывающие.

Из этого следует тот замечательный факт, что начиная аж с 1926 г. всякий раз, когда какой-нибудь физик берет комплексно-сопряженное к простому уравнению Шрёдингера и использует его для расчета квантовой вероятности, он, сам того не сознавая, учитывает решение этих уравнений с опережающей волной и влияние волн, движущихся назад во времени. С точки зрения математики у предложенной Крамером интерпретации квантовой механики не возникает никаких проблем, потому что вся математика, вплоть до уравнения Шрёдингера, там в точности такая же, как в копенгагенской интерпретации. Разница здесь, в буквальном смысле слова, только в интерпретации.

Крамер описывает типичную квантовую транзакцию как «рукопожатие» частицы с другой частицей, находящейся в другой точке пространства и времени. Он начинает с идеи электрона, испускающего электромагнитное излучение, которое поглощается другим электроном. Но это описание столь же хорошо работает и для вектора состояния квантового объекта, который начинает в одном состоянии и заканчивает в другом в результате некоего взаимодействия, – к примеру, для вектора состояния частицы, испущенной источником с одной стороны установки эксперимента с двумя отверстиями и поглощенной детектором с другой ее стороны.

Одна из трудностей подобного описания на обычном языке заключается в том, как мы должны трактовать взаимодействия, идущие одновременно в обоих направлениях во времени и потому происходящие мгновенно с точки зрения обычных часов в повседневном мире. Крамер делает это, оставаясь, по существу, вне времени и используя семантическое средство – описание в терминах своего рода псевдовремени. Это не более чем семантическое средство, но оно, безусловно, помогает большинству людей выстроить в своем сознании вразумительную картину.

Работает это примерно так. Когда квантовый объект (излучатель) взаимодействует с окружающим миром, он пытается делать это, порождая поле, которое представляет собой симметричную во времени смесь запаздывающей волны, уходящей в будущее, и опережающей волны, уходящей в прошлое. Ради получения понятной картины мы игнорируем опережающую волну и следим только за запаздывающей волной. Она движется в будущее, пока не встретит другой объект (поглотитель), с которым может вступить во взаимодействие. В ходе взаимодействия второй объект порождает новое запаздывающее поле, которое в точности компенсирует первое запаздывающее поле. В результате в будущем поглотителя никакого запаздывающего поля нет.

Но поглотитель порождает также отрицательную опережающую волну, идущую назад во времени к излучателю по траектории первоначальной запаздывающей волны. У излучателя эта опережающая волна поглощается, вызывая у первого объекта отклик, при котором тот излучает вторую опережающую волну назад в прошлое. Эта «новая» опережающая волна полностью компенсирует «первоначальную» опережающую волну, так что до начала всего этого процесса никакого эффективного излучения, идущего назад в прошлое, также нет. Остается только двойная волна, связывающая излучатель и поглотитель и наполовину состоящая из запаздывающей волны, несущей положительную энергию в будущее, а на другую половину – из опережающей волны, несущей отрицательную энергию в прошлое (по ходу отрицательного времени).

Поскольку минус на минус дает плюс, эта опережающая волна прибавляется к первоначальной запаздывающей волне, как если бы она тоже была запаздывающей волной, идущей от излучателя к поглотителю. Отрицательная энергия и отрицательное время в сумме дают положительную энергию, идущую вперед во времени. Как пишет Крамер:

Можно считать, что излучатель порождает «запросную» волну, которая движется к поглотителю. Затем поглотитель возвращает излучателю «подтверждающую» волну, и транзакция завершается «рукопожатием» через пространство-время [25].

Но это всего лишь цепочка событий с точки зрения псевдовремени. В реальности это вневременной процесс: все, что происходит, происходит сразу.

Если в этой цепочке событий и присутствует особое звено, – пишет Крамер, – это не то звено, которое завершает цепочку. Это звено в начале цепочки, когда излучатель, получив в ответ на свою запросную волну различные подтверждающие волны, усиливает одну из них, выбранную случайным образом в соответствии с правилами вероятности, причем так, что данная подтверждающая волна воплощается в реальности в виде завершенной транзакции. В конце вневременной транзакции нет слова «когда».

Как это разрешает главную загадку эксперимента с двумя отверстиями? Согласно ТИ, запаздывающая «запросная» волна распространяется через оба отверстия в установке и инициирует опережающую «подтверждающую» волну от детекторного экрана, которая проходит через оба отверстия в установке назад к источнику. Каждая частица случайным образом выбирает, которое из предложений принять, порождая интерференционную картину. Но если в хитроумном варианте эксперимента с отложенным выбором одно из отверстий закрывается после того, как частица отправилась в путь, частица уже «знает» об этом, потому что у подтверждающей волны осталось только одно отверстие, через которое она может пройти обратно для «рукопожатия». Крамер пишет:

Вопрос о том, когда наблюдатель решает, какой вариант эксперимента провести, больше не имеет значения. Наблюдатель определил конфигурацию экспериментальной установки и граничные условия, и транзакция сформовалась соответственно. Более того, тот факт, что событие регистрации предусматривает измерение (в отличие от любого другого взаимодействия), также не имеет более значения, так что наблюдатель не играет в процессе никакой особой роли.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию