Примечания книги: Сверхчеловек. Руководство биохакера для продуктивной и долгой жизни - читать онлайн, бесплатно. Автор: Дэйв Эспри

читать книги онлайн бесплатно
 
 

Онлайн книга - Сверхчеловек. Руководство биохакера для продуктивной и долгой жизни

Принято считать, что, пройдя период расцвета, организм человека начинает неумолимо деградировать. Однако исследования Дэйва Эспри говорят о том, что этот процесс можно контролировать. Становиться старше — совсем необязательно означает стареть, напротив, количество прожитых лет — отличный стимул довести работу своего тела до совершенства, обретая при этом поистине сверхчеловеческие способности. Прочитав эту книгу, вы узнаете, как довольно простые, но полезные корректировки в питании, освещении, режиме сна и физической активности позволяют улучшить когнитивные функции, стать максимально энергичными и работоспособными и сохранять отличную форму на протяжении многих и многих лет.

Перейти к чтению книги Читать книгу « Сверхчеловек. Руководство биохакера для продуктивной и долгой жизни »

Примечания

1

Дилан Томас (1914–1953) — английский поэт.

2

Вероятно, отсылка к мультфильму Moby Dick and the Mighty Mightor (1967–1969). Главный герой мультфильма — пещерный человек Тор, у которого есть прирученный динозавр Тог. Однажды персонажам удается спасти пожилого отшельника, и он в знак благодарности передает им дубинку, обладающую волшебными свойствами. С ее помощью Тор становится необычайно сильным и смелым, обретая при этом новое имя Майтор (Mightor — от англ. might, то есть «мощь», «сила»), а Тог превращается в огнедышащего дракона. С этого момента они вместе решают посвятить себя неустанной борьбе со злом.

3

Фрэнсис Бэкон (1561–1626) — английский философ, политический деятель, писатель.

4

Парацельс (1493–1541) — врач, философ эпохи Возрождения. 

5

Тихо Браге (1546–1601) — датский астроном эпохи Возрождения.

6

Роберт Бойль (1627–1691) — английский химик и физик.

7

Эспри Д. Биохакинг мозга. Проверенный план прокачки вашего мозга за две недели. М.: Манн, Иванов и Фербер, 2017. Прим. ред.

8

Органелла, или органоид, — структура, которая находится внутри клетки и выполняет определенную функцию.

9

E. Giovannucci et al. Diabetes and Cancer: A Consensus Report. — Diabetes Care 33. № 7 (2010): 1674–1685. https://doi.org/10.2337/dc10-0666.

10

Ch. Holscher. Diabetes as a Risk Factor for Alzheimer’s Disease: Insulin Signalling Impairment in the Brain as an Alternative Model of Alzheimer’s Disease. — Biochemical Society Transactions 39. № 4 (August 2011): 891–897. https://doi.org/10.1042/BST0390891.

11

Kr. Bhaskaran et al. Body-Mass Index and Risk of 22 Specific Cancers: A Population-Based Cohort Study of 5·24 Million UK Adults. — The Lancet 384. № 9945 (August 30, 2014): 755–765; K. Brown et al. The Fraction of Cancer Attributable to Modifiable Risk Factors in England. — Wales, Scotland, Northern Ireland, and the United Kingdom in 2015. — British Journal of Cancer 118. № 8 (April 2018): 1130–1141.

12

Ch. J. Murray, M. Ng, A. Mokdad. The Vast Majority of American Adults Are Overweight or Obese, and Weight Is a Growing Problem Among US Children. — Institute for Health Metrics and Evaluation (IHME). May 28, 2014. http://www.healthdata.org/news-release/vast-majority-american-adults-are-overweight-or-obese-and-weight-growing-problem-among.

13

Тиреоидные гормоны вырабатываются щитовидной железой.

14

Inflammatory Hypothesis Confirmed: Reducing Inflammation Without Lowering Cholesterol Cuts Risk of Cardiovascular Events. Health Canal. August 27, 2017. https://www.healthcanal.com/blood-heart-circulation/heart-disease/240113-inflammatory-hypothesis-confirmed-reducing-inflammation-without-lowering-cholesterol-cuts-risk-cardiovascular-events.html.

15

University of Colorado at Boulder. Fountain of Youth for Heart Health May Lie in the Gut: Age-Related Changes to Microbiome Fuel Vascular Decline. New Study Shows. ScienceDaily, March 19, 2019. www.sciencedaily.com/releases/2019/03/190319163527.htm.

16

R. Nemati et al. Deposition and Hydrolysis of Serine Dipeptide Lipids of Bacteroidetes Bacteria in Human Arteries: Relationship to Atherosclerosis. — Journal of Lipid Research 58 (October 2017): 1999–2007. https://doi.org/10.1194/jlr.M077792.

17

Th. Meyer et al. Attention Deficit-Hyperactivity Disorder Is Associated with Reduced Blood Pressure and Serum Vitamin D Levels: Results from the Nationwide German Health Interview and Examination Study for Children and Adolescents. — European Child & Adolescent Psychiatry, 26. № 2 (February 2017): 165–175. https://doi.org/10.1007/s00787-016-0852-3.

18

K. McKeever. Asperger Syndrome Tied to Low Cortisol Levels. — HealthDay, April 2, 2009. https://consumer.healthday.com/cognitive-health-information-26/autism-news-51/asperger-syndrome-tied-to-low-cortisol-levels-625706.html.

19

M. Donath, St. Shoelson. Type 2 Diabetes as an Inflammatory Disease. — Nature Reviews Immunology 11. № 2 (February 2011): 98–107. https://doi.org/10.1038/nri2925.

20

University of California — San Diego. Type 2 Diabetes: Inflammation, Not Obesity, Cause of Insulin Resistance. — ScienceDaily, November 7, 2007. https://www.sciencedaily.com/releases/2007/11/071106133106.htm.

21

Skinny fat — с английского можно перевести как «худой, но жирный».

22

Y. Wang et al. Association of Muscular Strength and Incidence of Type 2 Diabetes. — Mayo Clinic Proceedings 94. № 4 (April 2019): 643–651. https://doi.org/10.1016/j.mayocp.2018.08.037.

23

S. Weimer et al. D-Glucosamine Supplementation Extends Life Span of Nematodes and of Ageing Mice. — Nature Communications 5. April 8, 2014: 3563. https://doi.org/10.1038/ncomms4563.

24

R. Weindruch, R. Sohal. Seminars in Medicine of the Beth Israel Deaconess Medical Center. Caloric Intake and Aging. — New England Journal of Medicine 337. № 14 (October 2, 1997): 986–994. https://doi.org/10.1056/NEJM199710023371407.

25

D-Glucosamine as an Example of Calorie Restriction Mimetic Research. — Fight Aging! April 8, 2014. https://www.fightaging.org/archives/2014/04/d-glucosamine-as-an-example-of-calorie-restriction-mimetic-research/.

26

Karen W. Della Corte et al. Effect of Dietary Sugar Intake on Biomarkers of Subclinical Inflammation: A Systematic Review and Meta-Analysis of Intervention Studies. — Nutrients 10. № 5 (2018): 606. https://doi.org/10.3390/nu10050606.

27

S. Singh. Post-Prandial Hyperglycemia. — Indian Journal of Endocrinology and Metabolism 16. № 8 (December 2012): 245–247. https://doi.org/10.4103/2230–8210.104051.

28

Зональная диета — методика снижения веса, разработанная американским диетологом Барри Сирсом в 1996 году. Заключается в разделении белков, углеводов и жиров на блоки (зоны). Прим. ред.

29

Криптонит — в комиксах издательства DC Comics единственное из всех веществ, способное нанести вред Супермену.

30

Провоспалительный — способствующий развитию воспалительной реакции.

31

Federation of American Societies for Experimental Biology, Scientists Remove Amyloid Plaques from Brains of Live Animals with Alzheimer’s Disease. — ScienceDaily. www.sciencedaily.com/releases/2009/10/091015091602.htm (accessed July 16, 2019).

32

ОФЭКТ, или ОЭКТ, — однофотонная эмиссионная компьютерная томография (англ. Single-photon emission computed tomography, SPECT) — диагностический метод создания томографических изображений распределения радионуклидов. Прим. ред.

33

41 Percent of Americans Will Get Cancer. — UPI Health News, May 6, 2010. https://www.upi.com/41-percent-of-Americans-will-get-cancer/75711273192042/.

34

L. Coussens, Z. Werb. Inflammation and Cancer. — Nature 420. № 6917 (2002): 860–867. https://doi.org/10.1038/nature01322.

35

Раньше рудокопы брали с собой в шахту клетку с канарейкой, поскольку эта птица очень чувствительна к малейшему количеству газов в воздухе. Когда канарейка начинала вести себя необычно, угольщики уходили с этого участка.

36

Функциональная геномика — научное направление, целью которого является изучение генов, кодирующих белки или влияющих на их функционирование, а также исследование роли этих белков в биохимических процессах всего организма. Может также включать исследования естественных генетических вариаций во времени (например, развитие организма) или пространстве (например, частей тела), а также функциональные нарушения, такие как мутации. Прим. ред.

37

Функциональная медицина подразумевает комплексный подход к лечению: разработку стратегии профилактики болезней, выявления и устранения факторов риска и первопричин развития заболеваний, восстановления здоровья и увеличения продолжительности жизни. Объектом терапии служит не болезнь, а состояние организма в целом; основное внимание специалистов направлено на оптимизацию всех органов и систем человека. Автор термина — американский биохимик Джеффи Бленд, специализирующийся на вопросах питания. С начала 1990-х годов эта система лечения завоевала мировую популярность, несмотря на критическое отношение к ней некоторых представителей клинической медицины. Тем не менее следует отметить, что большинство данных, приведенных в книге, подкреплено результатами научных исследований. Прим. ред.

38

H. Karakelides, K. Nair. Sarcopenia of Aging and Its Metabolic Impact. — Current Topics in Developmental Biology 68 (2005): 123–148. https://doi.org/10.1016/S0070-2153(05)68005-2.

39

E. Volpi, R. Nazemi, S. Fujita. Muscle Tissue Changes with Aging. — Current Opinion in Clinical Nutrition and Metabolic Care 7. № 4 (2004): 405–410. https://doi.org/10.1097/01.mco.0000134362.76653.b2.

40

J. Golomb et al. Hippocampal Atrophy in Normal Aging. An Association with Recent Memory Impairment. — Archives of Neurology 50. № 9 (September 1993): 967–973. https://doi.org/10.1001/archneur.1993.00540090066012.

41

M. Stimpfel, N. Jancar, I. Virant-Klun. New Challenge: Mitochondrial Epigenetics? — Stem Cell Reviews and Reports 14. № 1 (February 2018): 13–26. https://doi.org/10.1007/s12015-017-9771-z.

42

J. Kirkland, T. Tchkonia. Cellular Senescence: A Translational Perspective. — EBioMedicine 21 (July 2017): 21–28. https://doi.org/10.1016/j.ebiom.2017.04.013.

43

V. Korolchuk et al. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? — EBioMedicine 21 (July 2017): 7–13. https://doi.org/10.1016/j.ebiom.2017.03.020.

44

O. Jeon et al. Senescent Cells and Osteoarthritis: A Painful Connection. — Journal of Clinical Investigation 128. № 4 (April 2, 2018): 1229–1237. https://doi.org/10.1172/JCI95147.

45

D. Huffman, M. Schafer, N. LeBrasseur. Energetic Interventions for Healthspan and Resiliency with Aging. — Experimental Gerontology 86 (December 15, 2016): 73–83. https://doi.org/10.1016/j.exger.2016.05.012.

46

Ch. Bannister et al. Can People with Type 2 Diabetes Live Longer Than Those Without? A Comparison of Mortality in People Initiated with Metformin or Sulphonylurea Monotherapy and Matched. — Non-Diabetic Controls, Diabetes, Obesity and Metabolism 16. № 11 (November 2014): 1165–1173. https://doi.org/10.1111/dom.12354.

47

Agn. Śmieszek et al. Antioxidant and Anti-Senescence Effect of Metformin on Mouse Olfactory Ensheathing Cells (mOECs) May Be Associated with Increased Brain-Derived Neurotrophic Factor Levels — An Ex Vivo Study. — International Journal of Molecular Sciences 18. № 4 (2017): 872. https://doi.org/10.3390/ijms18040872.

48

R. Wang et al. Rapamycin Inhibits the Secretory Phenotype of Senescent Cells by a Nrf2-Independent Mechanism. — Aging Cell 16. № 3 (June 2017): 564–574. https://doi.org/10.1111/acel.12587.

49

Animal Data Shows Fisetin to Be a Surprisingly Effective Senolytic. — Fight Aging! October 3, 2018. https://www.fightaging.org/archives/2018/10/animal-data-shows-fisetin-to-be-a-surprisingly-effective-senolytic/.

50

P. Maher. How Fisetin Reduces the Impact of Age and Disease on CNS Function. — Frontiers in Bioscience (Scholar Edition) 7 (June 1, 2015): 58–82. https://www.ncbi.nlm.nih.gov/pubmed/25961687.

51

K. Gander. Secret of Longevity Could Be Found in Traditional Japanese Plant that Appears to Slow Aging. — Newsweek, February 20, 2019. https://www.newsweek.com/anti-aging-longevity-japanese-plant-1336734.

52

Uncovering the Senolytic Mechanism of Piperlongumine. — Fight Aging! May 21, 2018. https://www.fightaging.org/archives/2018/05/uncovering-the-senolytic-mechanism-of-piperlongumine/.

53

Y.-J. Chen et al. Piperlongumine Inhibits Cancer Stem Cell Properties and Regulates Multiple Malignant Phenotypes in Oral Cancer. — Oncology Letters 15. № 2 (February 2018): 1789–1798. https://doi.org/10.3892/ol.2017.7486.

54

F. de Lima Moreira et al. Metabolic Profile and Safety of Piperlongumine. — Nature Scientific Reports 6 (September 29, 2016): article № 33646. https://www.nature.com/articles/srep33646.

55

Слово age с английского переводится как «возраст», «стареть».

56

A. Gaby. Adverse Effects of Dietary Fructose. — Alternative Medicine Review 10. № 4 (December 2005): 294–306. http://www.ncbi.nlm.nih.gov/pubmed/16366738.

57

M. Streeter et al. Identification of Glucosepane Cross-Link Breaking Enzymes. — Diabetes 67. № S1 (July 2018): 1229-P. https://doi.org/10.2337/db18-1229-P.

58

X. Wang et al. Insulin Deficiency Exacerbates Cerebral Amyloidosis and Behavioral Deficits in an Alzheimer Transgenic Mouse Model. — Molecular Neurodegeneration 5 (2010): 46. https://doi.org/10.1186/1750-1326-5-46.

59

Кетоз — состояние, при котором тело перестает получать энергию от углеводов и печень начинает преобразовывать жировые запасы тела в кетоны, то есть химические соединения, используемые организмом в качестве источника энергии.

60

Цепь аминокислот, из которых состоит белок, представляет собой определенную трехмерную структуру. Формирование такой структуры называется сворачиванием белка. Иногда этот процесс протекает со сбоями, и белок сворачивается неправильно.

61

J. Lite. Vitamin D Deficiency Soars in the U.S., Study Says. — Scientific American, March 23, 2009. https://www.scientificamerican.com/article/vitamin-d-deficiency-united-states/.

62

Society for Neuroscience, Staving Off Alzheimer’s Disease with the Right Diet, Prescriptions. — ScienceDaily, November 13, 2007. https://www.sciencedaily.com/releases/2007/11/071107211036.htm.

63

G. Notarachille et al. Heavy Metals Toxicity: Effect of Cadmium Ions on Amyloid Beta Protein 1-42. Possible Implications for Alzheimer’s Disease. — Biometals 27. № 2 (April 2014): 371–388. https://doi.org/10.1007/s10534-014-9719-6.

64

P. Tchounwou et al. Heavy Metal Toxicity and the Environment, in Molecular, Clinical and Environmental Toxicology. — Experientia Supplementum, vol. 101, ed. Andrea Luch (Basel, CH: Springer, 2012): 133–164.

65

E. Belyaeva et al. Mitochondria as an Important Target in Heavy Metal Toxicity in Rat Hepatoma AS-30D Cells. — Toxicology and Applied Pharmacology 231. № 1 (August 15, 2008): 34–42. https://doi.org/10.1016/j.taap.2008.03.017.

66

V. Singh et al. Advanced Glycation End Products and Diabetic Complications. — The Korean Journal of Physiology & Pharmacology 18. № 1 (2014): 1–14. https://doi.org/10.4196/kjpp.2014.18.1.1.

67

D. Turner. Advanced Glycation End-Products: A Biological Consequence of Lifestyle Contributing to Cancer Disparity. — Cancer Research 75. № 10 (May 2015): 1925–1929. https://doi.org/10.1158/0008–5472.CAN-15-0169.

68

M. Peppa, S. Raptis. Advanced Glycation End Products and Cardiovascular Disease. — Current Diabetes Reviews 4. № 2 (May 2008): 92–100. https://www.ncbi.nlm.nih.gov/pubmed/18473756.

69

N. Sasaki et al. Advanced Glycation End Products in Alzheimer’s Disease and Other Neurodegenerative Diseases. — American Journal of Pathology 153. № 4 (October 1998): 1149–1155. https://doi.org/10.1016/S0002-9440(10)65659-3.

70

The BMJ, Fried Food Linked to Heightened Risk of Early Death Among Older US Women: Fried Chicken and Fried Fish in Particular Seem to Be Associated with Higher Risk of Death. — ScienceDaily, January 23, 2019. https://www.sciencedaily.com/releases/2019/01/190123191637.htm.

71

Теломеры — концевые участки хромосом. Характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию. Прим. ред.

72

Hayflick Limit, ScienceDirect. https://www.sciencedirect.com/topics/medicine-and-dentistry/hayflick-limit.

73

P. van der Harst et al. Telomere Length of Circulating Leukocytes Is Decreased in Patients with Chronic Heart Failure. — Journal of the American College of Cardiology 49. № 13 (April 3, 2007): 1459–64. https://doi.org/10.1016/j.jacc.2007.01.027; A. Fitzpatrick et al. Leukocyte Telomere Length and Cardiovascular Disease in the Cardiovascular Health Study. — American Journal of Epidemiology 165. № 1 (January 1, 2007): 14–21. https://doi.org/10.1093/aje/kwj346; R. Zee et al. Association of Shorter Mean Telomere Length with Risk of Incident Myocardial Infarction: A Prospective, Nested Case-Control Approach. — Clinica Chemica Acta 403. № 1–2, (May 2009): 139–141. https://doi.org/10.1016/j.cca.2009.02.004.

74

M. McGrath et al. Telomere Length, Cigarette Smoking, and Bladder Cancer Risk in Men and Women. — Cancer Epidemiology, Biomarkers & Prevention 16. № 4 (April 2007): 815–819. https://doi.org/10.1158/1055–9965.EPI-06-0961.

75

M. Sampson et al. Monocyte Telomere Shortening and Oxidative DNA Damage in Type 2 Diabetes. — Diabetes Care 29. № 2 (February 2006): 283–289. https://doi.org/10.2337/diacare.29.02.06.dc05-1715.

76

A. Valdes et al. Telomere Length in Leukocytes Correlates with Bone Mineral Density and Is Shorter in Women with Osteoporosis. — Osteoporosis International 18. № 9 (September 2007): 1203–1210. https://doi.org/10.1007/s00198-007-0357-5.

77

M. Shammas. Telomeres, Lifestyle, Cancer, and Aging. — Current Opinion in Clinical Nutrition and Metabolic Care 14, no.1 (January 2011): 28–34. https://doi.org/10.1097/MCO.0b013e32834121b1.

78

R. Cawthon et al. Association Between Telomere Length in Blood and Mortality in People Aged 60 Years or Older. — The Lancet 361. № 9355 (February 1, 2003): 393–395. https://doi.org/10.1016/S0140-6736(03)12384-7.

79

E. Epel. Accelerated Telomere Shortening in Response to Life Stress. — Proceedings of the National Academy of Science of the USA 101. № 49 (December 7, 2004): 17312–17315. https://doi.org/10.1073/pnas.040716210.

80

Gr. Reynolds. Phys Ed: How Exercising Keeps Your Cells Young. — New York Times Well, January 27, 2010. https://well.blogs.nytimes.com/2010/01/27/phys-ed-how-exercising-keeps-your-cells-young/?scp=1&sq=how%20exercising%20keeps%20your%20cells%20young&st=cse.

81

A. Starkweather. The Effects of Exercise on Perceived Stress and IL-6 Levels Among Older Adults. — Biological Research for Nursing 8. № 3 (January 2007): 186–194. https://www.ncbi.nlm.nih.gov/pubmed/17172317.

82

V. Anisimov et al. Effect of Epitalon on Biomarkers of Aging, Life Span and Spontaneous Tumor Incidence in Female Swissderived SHR Mice. — Biogerontology 4. № 4 (2003): 193–202. https://doi.org/10.1023/A:1025114230714.

83

G. Kossoy et al. Epitalon and Colon Carcinogenesis in Rats: Proliferative Activity and Apoptosis in Colon Tumors. — International Journal of Molecular Medicine 12. № 4 (October 2003): 473–475. https://doi.org/10.3892/ijmm.12.4.473.

84

Br. Molgora et al. Functional Assessment of Pharmacological Telomerase Activators in Human T Cells. — Cells 2. № 1 (March 2013): 57–66. https://doi.org/10.3390/cells2010057.

85

В ходе такой диеты человек временно перестает употреблять продукты, способные вызвать сильную реакцию иммунной системы и в целом нанести вред здоровью. Затем все эти продукты по очереди возвращают в рацион и наблюдают за реакцией организма. Таким образом удается выяснить, какая именно пища отрицательно воздействует на здоровье данного человека.

86

Эспри Д. Меняя правила. Что помогает лидерам, новаторам и неординарным личностям побеждать. М.: Манн, Иванов и Фербер, 2021. Прим. ред.

87

K. Kim et al. Gut Microbiota Lipopolysaccharide Accelerates Inflamm-Aging in Mice. — BMC Microbiology 16. № 1 (2016): 9. https://doi.org/10.1186/s12866-016-0625-7; Yong-Fei Zhao et al. The Synergy of Aging and LPS Exposure in a Mouse Model of Parkinson’s Disease. — Aging and Disease 9. № 5 (2018): 785–797. https://doi.org/10.14336/AD.2017.1028.

88

K. Wung Chung et al. Age-Related Sensitivity to Endotoxin-Induced Liver Inflammation: Implication of Inflammasome/IL-1β for Steatohepatitis. — Aging Cell 14. № 4 (April 2015): 526. fig. 1. https://doi.org/10.1111/acel.12305.

89

C. Sategna-Guidetti et al. Autoimmune Thyroid Disease and Coeliac Disease. — European Journal of Gastroenterology & Hepatology 10. № 11 (November 1998): 927–931. http://www.ncbi.nlm.nih.gov/pubmed/9872614.

90

A. Batchelor, J. Compston. Reduced Plasma Half-Life of Radio-Labelled 25-Hydroxyvitamin D3 in Subjects Receiving a High-Fibre Diet. — British Journal of Nutrition 49. № 2 (March 1983): 213–216. https://doi.org/10.1079/BJN19830027.

91

S. Thongprakaisang et al. Glyphosate Induces Human Breast Cancer Cells Growth via Estrogen Receptors. — Food and Chemical Toxicology 59 (September 2013): 129–136. https://doi.org/10.1016/j.fct.2013.05.057.

92

Fr. Peixoto. Comparative Effects of the Roundup and Glyphosate on Mitochondrial Oxidative Phosphorylation. — Chemosphere 61. № 8 (December 2005): 1115–1122. https://doi.org/10.1016/j.chemosphere.2005.03.044.

93

A. Samsel, St. Seneff. Glyphosate, Pathways to Modern Diseases IV: Cancer and Related Pathologies. — Journal of Biological Physics and Chemistry 15 (2015): 121–159. https://doi.org/10.4024/11SA15R.jbpc.15.03.

94

Прекурсор — исходное вещество, которое используется как один из компонентов для проведения химической реакции и получения целевого вещества.

95

St. Seneff, L. Orlando. Glyphosate Substitution for Glycine During Protein Synthesis as a Causal Factor in Mesoamerican Nephropathy. — Journal of Environmental & Analytical Toxicology 8. № 1 (2018): 541. https://doi.org/10.4172/2161–0525.1000541.

96

J. O’Keefe, N. Gheewala, J. O’Keefe. Dietary Strategies for Improving Post-Prandial Glucose, Lipids, Inflammation, and Cardiovascular Health. — Journal of the American College of Cardiology 51. № 3 (January 22, 2008): 249–255. https://doi.org/10.1016/j.jacc.2007.10.016.

97

Кэмпбелл Т., Кэмпбелл К. Китайское исследование. Результаты самого масштабного исследования связи питания и здоровья. М.: Манн, Иванов и Фербер, 2013. Прим. ред.

98

B. Altınterim. Anti-Thеroid Effects of PUFAs (Polyunsaturated Fats) and Herbs. — Trakya University Journal of Natural Sciences 13. № 2 (2012): 87–94. https://www.researchgate.net/publication/268515453_antithroid_effects_of_pufas_polyunsaturated_fats_and_herbs.

99

«Зона Златовласки» — оптимальная зона для жизни, которая зависит от яркости звезды. Название взято из сказки «Три медведя», где Златовласка выбирает между холодной и горячей кашей, а берет теплую.

100

M. Levine et al. Low Protein Intake Is Associated with a Major Reduction in IGF-1. Cancer, and Overall Mortality in the 65 and Younger but Not Older Population. — Cell Metabolism 19. № 3 (March 4, 2014): 407–417. https://doi.org/10.1016/j.cmet.2014.02.006.

101

J. Trepanowski et al. Impact of Caloric and Dietary Restriction Regimens on Markers of Health and Longevity in Humans and Animals: A Summary of Available Findings. — Nutrition Journal 10 (October 7, 2011): 107. https://doi.org/10.1186/1475-2891-10-107.

102

В 100 г говядины содержится примерно 2,6 г коллагена, в мясе птицы — 2,4 г. Прим. ред.

103

Okinawa Institute of Science and Technology (OIST) Graduate University. Fasting Ramps Up Human Metabolism. — Study Shows. ScienceDaily, January 31, 2019. https://www.sciencedaily.com/releases/2019/01/190131113934.htm.

104

M. Alirezaei et al. Short-Term Fasting Induces Profound Neuronal Autophagy. — Autophagy 6. № 6 (August 2010): 702–10. https://doi.org/10.4161/auto.6.6.12376.

105

B. Sadeghirad et al. Islamic Fasting and Weight Loss: A Systematic Review and Meta-Analysis. — Public Health Nutrition 17. № 2 (February 1, 2014): 396–406. https://doi.org/10.1017/S1368980012005046.

106

M. Mattson, W. Duan, Zh. Guo. Meal Size and Frequency Affect Neuronal Plasticity and Vulnerability to Disease: Cellular and Molecular Mechanisms. — Journal of Neurochemistry, 84. № 3 (February 2003): 417–431. https://doi.org/10.1046/j.1471–4159.2003.01586.x.

107

G. van Meer, D. Voelker, G. Feigenson, Membrane Lipids: Where They Are and How They Behave. — Nature Reviews Molecular Cell Biology 9. № 2 (February 2008): 112–124. https://doi.org/10.1038/nrm2330.

108

V. Rioux. Fatty Acid Acylation of Proteins: Specific Roles for Palmitic, Myristic and Caprylic Acids. — OCL 23. № 3 (May — June 2016): D304. https://doi.org/10.1051/ocl/2015070.

109

E. Parra-Ortiz et al. Effects of Oxidation on the Physicochemical Properties of Polyunsaturated Lipid Membranes. — Journal of Colloid and Interface Science 538 (March 7, 2019): 404–419. https://doi.org/10.1016/j.jcis.2018.12.007.

110

National Institutes of Health. Office of Dietary Supplements. Omega-3 Fatty Acids: Fact Sheet for Health Professionals. U.S. — Department of Health and Human Services. November 21, 2018. https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/.

111

N. Simonsen et al. Adipose Tissue Omega-3 and Omega-6 Fatty Acid Content and Breast Cancer in the EURAMIC Study. — American Journal of Epidemiology 147. № 4 (February 15, 1998): 342–352. https://doi.org/10.1093/oxfordjournals.aje.a009456; S. Ghosh, E. Novak, Sh. Innis. Cardiac Proinflammatory Pathways Are Altered with Different Dietary n-6 Linoleic to n-3 Alpha-Linolenic Acid Ratios in Normal, Fat-Fed Pigs. — American Journal of Physiology: Heart and Circulatory Physiology 293. № 5 (November 2007): H2919–2927. https://doi.org/10.1152/ajpheart.00324.2007; U. Nair, H. Bartsch, J. Nair. Lipid Peroxidation-Induced DNA Damage in Cancer-Prone Inflammatory Diseases: A Review of Published Adduct Types and Levels in Humans. — Free Radical Biology & Medicine 43. № 8 (October 2007): 1109–1120. https://doi.org/10.1016/j.freeradbiomed.2007.07.012; V. Chajes, Ph. Bougnoux. Omega-6/Omega-3 Polyunsaturated Fatty Acid Ratio and Cancer, in Omega 6/Omega 3 Fatty Acid Ratio: The Scientific Evidence. — World Review of Nutrition and Dietetics. vol. 92. Basel: Karger, 2003. р. 133–151; E. Sonestedt et al. Do Both Heterocyclic Amines and Omega-6 Polyunsaturated Fatty Acids Contribute to the Incidence of Breast Cancer in Postmenopausal Women of the Malmo Diet and Cancer Cohort? — International Journal of Cancer 123. № 7 (October 1. 2008): 1637–1643. https://doi.org/10.1002/ijc.23394.

112

J. Song et al. Analysis of Trans Fat in Edible Oils with Cooking Process. — Toxicological Research 31. № 3 (September 2015): 307–312. https://doi.org/10.5487/TR.2015.31.3.307.

113

Инуиты — этническая общность, состоящая из коренных народов Северной Америки.

114

«Фактор страха» (англ.). Согласно правилам шоу, участники выполняют задания, в каждом из которых необходимо побороть тот или иной страх. В России выходила аналогичная передача с тем же названием.

115

Whole Foods — сеть супермаркетов в США, занимающаяся продажей органических продуктов, то есть таких, в которых вредные искусственно созданные химические соединения либо не содержатся вообще, либо содержатся в минимальном количестве.

116

Среднецепочечные триглицериды (англ. Medium-chain triglycerides, МСТ) — жиры, содержащиеся в кокосовом масле. Они метаболизируются иначе, чем длинноцепочечные триглицериды (LCT), обнаруженные в большинстве других продуктов. Масло со среднецепочечными триглицеридами содержит много этих жиров и обладает многочисленными полезными свойствами. Прим. ред.

117

Charmin — компания по производству туалетной бумаги и влажных салфеток. Прим. ред.

118

C. Vandenberghe et al. Tricaprylin Alone Increases Plasma Ketone Response More Than Coconut Oil or Other Medium-Chain Triglycerides: An Acute Crossover Study in Healthy Adults/ — Current Developments in Nutrition 1. № 4 (April 1, 2017): e000257. https://doi.org/10.3945/cdn.116.000257.

119

Слово составлено из hungry — «голодный» и angry — «разозленный», «разгневанный».

120

A. Herrera, P. Arias. Einstein Cosmological Constant, the Cell, and the Intrinsic Property of Melanin to Split and ReForm the Water Molecule. — MOJ Cell Science & Report 1. № 2 (August 27, 2014): 46–51. https://doi.org/10.15406/mojcsr.2014.01.00011.

121

A. Moreira et al. Coffee Melanoidins: Structures, Mechanisms of Formation and Potential Health Impacts, — Food & Function 3. N 9 (September 2012): 903–915. https://doi.org/10.1039/c2fo30048f.

122

U. Wagner et al. Sleep Inspires Insight. — Nature 247. № 6972 (January 22, 2004): 352–355. https://doi.org/10.1038/nature02223.

123

M. Altemus et al. Stress-Induced Changes in Skin Barrier Function in Healthy Women. — Journal of Investigative Dermatology 117. 2 (August 2001): 309–317. https://doi.org/10.1046/j.1523–1747.2001.01373.x.

124

Ph. J. Carter et al. Longitudinal Analysis of Sleep in Relation to BMI and Body Fat in Children: The FLAME Study. — BMJ 342 (May 26, 2011): d2712. https://doi.org/10.1136/bmj.d2712.

125

J. Arendt. Shift Work: Coping with the Biological Clock. — Occupational Medicine 60. № 1 (January 2010): 10–20, https://doi.org/10.1093/occmed/kqp162.

126

G. Beccuti, S. Pannain. Sleep and Obesity. — Current Opinion in Clinical Nutrition & Metabolic Care 14. № 4 (July 2011): 402–412. https://doi.org/10.1097/MCO.0b013e3283479109.

127

L. Xie et al. Sleep Drives Metabolite Clearance from the Adult Brain. — Science 342. № 6156 (October 18, 2013): 373–377. https://doi.org/10.1126/science.1241224.

128

National Institutes of Health. Sleep Deprivation Increases Alzheimer’s Protein. — NIH Research Matters. April 24, 2018. https://www.nih.gov/news-events/nih-research-matters/sleep-deprivation-increases-alzheimers-protein.

129

H. Lee et al. The Effect of Body Posture on Brain Glymphatic Transport. — The Journal of Neuroscience 34. № 31 (August 5, 2015): 11034–11044. https://doi.org/10.1523/JNEUROSCI.1625-15.2015.

130

M. Fujita et al. Effects of Posture on Sympathetic Nervous Modulation in Patients with Chronic Heart Failure. — The Lancet 356. № 9244 (November 25, 2000): 1822–1823. https://doi.org/10.1016/S0140-6736(00)03240-2.

131

R. Ramezani, P. Stacpoole. Sleep Disorders Associated with Primary Mitochondrial Diseases. — Journal of Clinical Sleep Medicine: JCSM 10. № 11 (November 15, 2014): 1233–1239. https://doi.org/10.5664/jcsm.4212.

132

D. Kripke et al. Mortality Related to Actigraphic Long and Short Sleep. — Sleep Medicine 12. № 1 (January 2011): 28–33. https://www.ncbi.nlm.nih.gov/pubmed/11825133.

133

Герц — единица измерения частоты периодических процессов; одно колебание в секунду. Прим. ред.

134

J. Benington, H. Heller. Restoration of Brain Energy Metabolism as the Function of Sleep. — Progress in Neurobiology 45. № 4 (March 1995): 347–360. https://doi.org/10.1016/0301–0082(94)00057-O.

135

S. Cairney et al. Mechanisms of Memory Retrieval in Slow-Wave Sleep. — Sleep 40. № 9 (September 2017): zsx114. https://doi.org/10.1093/sleep/zsx114.

136

S. Cairney et al. Complementary Roles of Slow-Wave Sleep and Rapid Eye Movement Sleep in Emotional Memory Consolidation. — Cerebral Cortex 25. № 6 (June 2015): 1565–1575. https://doi.org/10.1093/cercor/bht349.

137

J. Floyd et al. Changes in REM-Sleep Percentage over the Adult Lifespan. — Sleep 30. № 7 (July 1, 2007): 829–836. https://doi.org/10.1093/sleep/30.7.829.

138

How Many Hours of Deep Sleep Does One Need? — New Health Advisor, https://www.newhealthadvisor.com/How-Much-Deep-Sleep-Do-You-Need.html.

139

Вариабельность сердечного ритма (англ. Heart rate variability, HRV) — физиологическое явление, проявляющееся в изменении интервала между началами двух соседних сердечных циклов. Прим. ред.

140

Sleep Restriction May Reduce Heart Rate Variability. — Medscape. June 15, 2007. https://www.medscape.com/viewarticle/558331.

141

J. Gouin et al. Heart Rate Variability Predicts Sleep Efficiency. — Sleep Medicine 14. № 1 (December 2013): e142. https://doi.org/10.1016/j.sleep.2013.11.321.

142

Транскраниальная микрополяризация (ТКМП), или микрополяризация головного мозга, — лечебное воздействие на отдельные структуры мозга очень слабым постоянным электрическим током. Метод лечения разработан в 1970-х годах учеными Ленинградского института экспериментальной медицины. Прим. ред.

143

M. Massimini et al. Triggering Sleep Slow Waves by Transcranial Magnetic Stimulation. — Proceedings of the National Academy of Sciences of the USA 104. № 20 (May 15, 2007): 8496–8501. https://doi.org/10.1073/pnas.0702495104.

144

Миллисекунда (мс) — единица времени, равная одной тысячной доле секунды. Прим. ред.

145

G. Tononi et al. Enhancing Sleep Slow Waves with Natural Stimuli. — Medicamundi 54. № 2 (January 2010): 82–88. https://www.researchgate.net/publication/279545240_Enhancing_sleep_slow_waves_with_natural_stimuli.

146

H.-V. Ngo et al. Auditory Closed Loop Stimulation of the Sleep Slow Oscillation Enhances Memory. — Neuron 78. № 3 (May 8, 2013): P545–553. https://doi.org/10.1016/j.neuron.2013.03.006; L. Besedovsky et al. Auditory Closed-Loop Stimulation of EEG Slow Oscillations Strengthens Sleep and Signs of Its Immune-Supportive Function. — Nature Communications 8. № 1 (2017): 1984. https://doi.org/10.1038/s41467-017-02170-3.

147

R. Strong et al. Narrow-Band Blue-Light Treatment of Seasonal Affective Disorder in Adults and the Influence of Additional Nonseasonal Symptoms. — Depression and Anxiety 26. № 3 (2009): 273–278. https://doi.org/10.1002/da.20538.

148

Junk food буквально переводится как «еда-мусор» или «мусорная еда». Имеется в виду пища, вредная для здоровья.

149

G. Tosini, I. Ferguson, K. Tsubota. Effects of Blue Light on the Circadian System and Eye Physiology. — Molecular Vision 22 (January 24, 2016): 61–72, https://www.ncbi.nlm.nih.gov/pubmed/26900325; A.-M. Chang et al. Evening Use of Light-Emitting eReaders Negatively Affects Sleep, Circadian Timing, and Next-Morning Alertness. — Proceedings of the National Academy of Sciences of the USA 112, № 4 (January 27, 2015): 1232–1237, https://doi.org/10.1073/pnas.1418490112.

150

Tosini, Ferguson, Tsubota, Effects.

151

Chang et al. Evening Use.

152

K. Spiegel et al. Effects of Poor and Short Sleep on Glucose Metabolism and Obesity Risk. — Nature Reviews Endocrinology 5. № 5 (2009): 253–261. https://doi.org/10.1038/nrendo.2009.23.

153

A. Garcia-Saenz et al. Evaluating the Association Between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study). — Environmental Health Perspectives 126. № 4 (April 23, 2018): 047011. https://doi.org/10.1289/EHP1837.

154

A. Sancar et al. Circadian Clock Control of the Cellular Response to DNA Damage. — FEBS Letters 584. № 12 (June 18, 2010): 2618–2625. https://doi.org/10.1016/j.febslet.2010.03.017.

155

Tosini, Ferguson, Tsubota. Effects.

156

Bright Focus Foundation. Age-Related Macular Degeneration: — Facts and Figures. last modified January 5, 2016, https://www.brightfocus.org/macular/article/age-related-macular-facts-figures.

157

Автор с расстояния 610 см видит то, что человек с нормальным зрением видит с расстояния 460 см.

158

E. Loane et al. Transport and Retinal Capture of Lutein and Zeaxanthin with Reference to Age-Related Macular Degeneration. — Survey of Ophthalmology 53. № 1 (January — February 2008): 68–81. https://doi.org/10.1016/j.survophthal.2007.10.008; Le Ma et al. Effect of Lutein and Zeaxanthin on Macular Pigment and Visual Function in Patients with Early Age-Related Macular Degeneration. — Ophthalmology 119. № 11 (November 2012): 2290–2297. https://doi.org/10.1016/j.ophtha.2012.06.014.

159

Крепость уединения (Fortress of Solitude) — секретное убежище Супермена.

160

Y. Li et al. Melatonin for the Prevention and Treatment of Cancer. — Oncotarget 8. № 24 (June 2017): 39896–39921. https://doi.org/10.18632/oncotarget.16379.

161

B. Sarode et al. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot. — Molecular Pharmacology 13. № 11 (November 7, 2016): 3835–3841. https://doi.org/10.1021/acs.molpharmaceut.6b00633; Marla Paul. Exposure to Bright Light May Alter Blood Sugar. — Futurity. May 19, 2016. https://www.futurity.org/bright-light-metabolism-1166262-2/.

162

N. Rybnikova, A. Haim, B. Portnov. Does Artificial Light-at-Night Exposure Contribute to the Worldwide Obesity Pandemic? — International Journal of Obesity 40. № 5 (May 2016): 815–823. https://doi.org/10.1038/ijo.2015.255.

163

B. Godley et al. Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells. — The Journal of Biological Chemistry 280. № 22 (June 3, 2005): 21061–21066. https://doi.org/10.1074/jbc.M502194200.

164

H. Ishii et al. Seasonal Variation of Glycemic Control in Type-2 Diabetic Patients. — Diabetes Care 24. № 8 (August 2001): 1503. https://doi.org/10.2337/diacare.24.8.1503.

165

P. Lindqvist, H. Olsson, M. Landin-Olsson. Are Active Sun Exposure Habits Related to Lowering Risk of Type 2 Diabetes Mellitus in Women, a Prospective Cohort Study? — Diabetes Research and Clinical Practice 90. № 1 (October 2010): 109–114. https://doi.org/10.1016/j.diabres.2010.06.007.

166

S. Geldenhuys et al. Ultraviolet Radiation Suppresses Obesity and Symptoms of Metabolic Syndrome Independently of Vitamin D in Mice Fed a High-Fat Diet. — Diabetes 63. № 11 (November 2011): 3759–3769. https://doi.org/10.2337/db13-1675.

167

D. Barolet, Fr. Christiaens, M. Hamblin. Infrared and Skin: Friend or Foe. — Journal of Photochemistry and Photobiology B: Biology 155 (February 2016): 78–85. https://doi.org/10.1016/j.jphotobiol.2015.12.014.

168

P. Lindqvist et al. Avoidance of Sun Exposure as a Risk Factor for Major Causes of Death: A Competing Risk Analysis of the Melanoma in Southern Sweden Cohort. — Journal of Internal Medicine 280. № 4 (October 2016): 375–387. https://doi.org/10.1111/joim.12496.

169

D. Main. Why Insect Populations Are Plummeting — and Why It Matters. — National Geographic. February 14, 2019. https://www.nationalgeographic.com/animals/2019/02/why-insect-populations-are-plummeting-and-why-it-matters/.

170

Cl. Ferraresi, M. Hamblin, N. Parizotto. Low-Level Laser (Light) Therapy (LLLT) on Muscle Tissue: Performance, Fatigue and Repair Benefited by the Power of Light, — Photonics & Lasers in Medicine 1. № 4 (November 1, 2012): 267–286. https://doi.org/10.1515/plm-2012-0032.

171

L. Gavish et al. Low Level Laser Irradiation Stimulates Mitochondrial Membrane Potential and Disperses Subnuclear Promyelocytic Leukemia Protein, — Lasers in Surgery and Medicine 35. № 5 (December 2004): 369–376. https://doi.org/10.1002/lsm.20108.

172

P. Avci et al. Low-Level Laser (Light) Therapy (LLLT) in Skin: Stimulating, Healing, Restoring. — Seminars in Cutaneous Medicine and Surgery 32. no.1 (2013): 41–52. https://www.ncbi.nlm.nih.gov/pubmed/24049929.

173

S.-R. Tsai et al. Low-Level Light Therapy Potentiates NPe6-Mediated Photodynamic Therapy in a Human Osteosarcoma Cell Line via Increased ATP. — Photodiagnosis and Photodynamic Therapy 12. № 1 (March 2015): 123–130. https://doi.org/10.1016/j.pdpdt.2014.10.009.

174

U. Mitchell, G. Mack. Low-Level Laser Treatment with Near-Infrared Light Increases Venous Nitric Oxide Levels Acutely: A Single-Blind. Randomized Clinical Trial of Efficacy. — American Journal of Physical Medicine & Rehabilitation 92. № 2 (February 2013): 151–156. https://doi.org/10.1097/PHM.0b013e318269d70a.

175

F. Hamblin, Parizotto. Low-Level Laser (Light) Therapy.

176

F. de Lima, F. Timbo Barbosa, C. de Sousa-Rodrigues. Use Alone or in Combination of Red and Infrared Laser in Skin Wounds. — Journal of Lasers in Medical Sciences 5. № 2 (2014): 51–57. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4291816/.

177

I. Geneva. Photobiomodulation for the Treatment of Retinal Diseases: A Review. — International Journal of Ophthalmology 9. no.1 (January 2016): 145–152. https://doi.org/10.18240/ijo.2016.01.24.

178

St. Genuis et al. Blood, Urine, and Sweat (BUS) Study: Monitoring and Elimination of Bioaccumulated Toxic Elements. — Archives of Environmental Contamination and Toxicology 61. № 2 (August 2011): 344–357. https://doi.org/10.1007/s00244-010-9611-5.

179

Глутатион (GSH) — пептид, состоящий из трех ключевых аминокислот, обладающий огромной способностью бороться с окислительным стрессом и нейтрализовывать свободные радикалы. Прим. ред.

180

H. Naito et al. Heat Stress Attenuates Skeletal Muscle Atrophy in Hindlimb-Unweighted Rats. — Journal of Applied Physiology 88. № 1 (January 2000): 359–363. https://doi.org/10.1152/jappl.2000.88.1.359.

181

R. Weiss et al. Clinical Experience with Light-Emitting Diode (LED). — Photomodulation. Dermatologic Surgery 31. № 9. pt. 2 (September 2005): 1199–1205. https://www.ncbi.nlm.nih.gov/pubmed/16176771.

182

Tina S. Alster and Rungsima Wanitphakdeedecha. Improvement of Postfractional Laser Erythema with Light-Emitting Diode Photomodulation. — Dermatologic Surgery 35. № 5 (May 2009): 813–815. https://doi.org/10.1111/j.1524–4725.2009.01137.x.

183

M. DeLand et al. Treatment of Radiation-Induced Dermatitis with Light-Emitting Diode (LED) Photomodulation. — Lasers in Surgery and Medicine 39. № 2 (February 2007): 164–168. https://doi.org/10.1002/lsm.20455.

184

Торговую марку TrueLight создал я, поэтому в данном случае меня можно заподозрить в предвзятости. А что касается вышеупомянутых исследований, на которые я ссылался, то по их результатам судить о возможной эффективности или неэффективности устройства TrueLight Energy Square нельзя, так как в ходе этих исследований использовались совсем другие приборы. Прим. авт.

185

S. Momenzadeh et al. The Intravenous Laser Blood Irradiation in Chronic Pain and Fibromyalgia. — Journal of Lasers in Medical Sciences 6. № 1 (2015): 6–9. https://doi.org/10.22037/2010.v6i1.7800.

186

V. Mikhaylov. The Use of Intravenous Laser Blood Irradiation (ILBI) at 630–640 nm to Prevent Vascular Diseases and to Increase Life Expectancy. — Laser Therapy 24. № 1 (March 31, 2015): 15–26. https://doi.org/10.5978/islsm.15-OR-02.

187

«Смерть от тысячи порезов» — казнь, применявшаяся в Китае примерно до начала XX века. Заключалась в том, что осужденному отрезали небольшие части плоти.

188

Бредесен Д. Нестареющий мозг. М.: Эксмо, 2019.

189

«Трон» (1982) — американский научно-фантастический фильм, главный герой которого — программист в крупной корпорации.

190

Гиппокамп — ключевое звено лимбической системы головного мозга. Ее структуры участвуют в регулировании работы внутренних органов, эмоций, памяти, пространственной навигации и других когнитивных функций. Прим. ред.

191

S. McGreevey. Brain Checkpoint. — Harvard Medical School News and Research. October 25, 2018. https://hms.harvard.edu/news/brain-checkpoint.

192

Br. Giunta et al. Inflammaging as a Prodrome to Alzheimer’s Disease. — Journal of Neuroinflammation 5 (2008): 51. https://doi.org/10.1186/1742-2094-5-51.

193

Так в англоязычных странах стали называть боковой амиотрофический склероз после того, как от этой болезни умер легендарный американский бейсболист Генри Лу Гериг (1903–1941). Тем же недугом страдал Стивен Хокинг (1942–2018).

194

Дэйл Бредесен — доктор медицины, специалист в области нейродегенеративных заболеваний, преподаватель Калифорнийского университета в Сан-Диего, США. Долгое время работал ассистентом нобелевского лауреата Стенли Прузинера в лаборатории UCSF. В своей книге «Нестареющий мозг. Глобальное медицинское открытие об истинных причинах снижения умственной активности, позволяющее обрести ясность ума, хорошую память и спасти мозг от болезни Альцгеймера» он выделил 36 метаболических факторов, приводящих к снижению умственной деятельности человека, устранив которые можно быть на 100% уверенными в полноценной работе своего мозга в любой промежуток своей жизни. Прим. ред.

195

Хлыстовая травма — повреждение шейного отдела позвоночника, возникающее в результате травмирующих ситуаций, когда шея резко сгибается и затем распрямляется либо, напротив, сначала резко разгибается и потом сгибается.

196

P. Lapchak. Transcranial Near-Infrared Laser Therapy Applied to Promote Clinical Recovery in Acute and Chronic Neurodegenerative Diseases. — Expert Review of Medical Devices 9. № 1 (January 2012): 71–83. https://doi.org/10.1586/erd.11.64.

197

M. Wong-Riley et al. Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins. — Journal of Biological Chemistry 280. № 6 (February 11, 2005): 4761–4771. https://doi.org/10.1074/jbc.M409650200.

198

Javad T. Hashmi et al. Role of Low-Level Laser Therapy in Neurorehabilitation. — PM&R 2. № 12, Supplement 2 (December 2010): S292–S305. https://doi.org/10.1016/j.pmrj.2010.10.013.

199

M. Hamblin. Shining Light on the Head: Photobiomodulation for Brain Disorders. — BBA Clinical 6 (October 1, 2016): 113–124. https://doi.org/10.1016/j.bbacli.2016.09.002.

200

Хью Хефнер (1926–2017) — основатель и шеф-редактор мужского журнала «Плейбой» (Playboy); часто носил красный шелковый халат.

201

A. Trafton. Unique Visual Stimulation May Be New Treatment for Alzheimer’s. — MIT News, December 7, 2016, http://news.mit.edu/2016/visual-stimulation-treatment-alzheimer-1207.

202

A. Saltmarche et al. Significant Improvement in Cognition in Mild to Moderately Severe Dementia Cases Treated with Transcranial Plus Intranasal Photobiomodulation: Case Series Report. — Journal of Photomedicine and Laser Surgery 35. № 8 (August 2017): 432–441. https://doi.org/10.1089/pho.2016.4227.

203

R. Mullins et al. Insulin Resistance as a Link Between Amyloid-Beta and Tau Pathologies in Alzheimer’s Disease. — Frontiers in Aging Neuroscience 9 (May 3, 2017): 118. https://doi.org/10.3389/fnagi.2017.00118.

204

P. Poucheret et al. Vanadium and Diabetes. — Molecular and Cellular Biochemistry 188. № 1–2 (November 1998): 73–80. https://doi.org/10.1023/A:1006820522587.

205

H. Lukaski. Lessons from Micronutrient Studies in Patients with Glucose Intolerance and Diabetes Mellitus: Chromium and Vanadium.U.S. Department of Health and — Human Services, November 8, 2000. https://ods.od.nih.gov/pubs/conferences/lukaski_abstract.html.

206

Американская телепередача, которую ведет врач Мехмет Оз.

207

Сквош — разновидность тыквы.

208

K. Kinzig, M. Honors, S. Hargrave. Insulin Sensitivity and Glucose Tolerance Are Altered by Maintenance on a Ketogenic Diet. — Endocrinology 151. № 7 (July 2010): 3105–3114. https://doi.org/10.1210/en.2010–0175.

209

J. Newman, E. Verdin. Ketone Bodies as Signaling Metabolites. — Trends in Endocrinology & Metabolism 25. № 1 (January 2014): 42–52. https://doi.org/10.1016/j.tem.2013.09.002.

210

S. Craft et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment. — A Pilot Clinical Trial. Archives of Neurology 69. № 1 (January 2012): 29–38. https://doi.org/10.1001/archneurol.2011.233.

211

ME (международная единица) — величина, обозначающая дозу вещества в зависимости от эффекта, оказываемого этим веществом на работу организма.

212

J. Morris, J. Burns. Insulin: An Emerging Treatment for Alzheimer’s Disease Dementia? — Current Neurology and Neuroscience Reports 12. № 5 (October 2012): 520–527. https://doi.org/10.1007/s11910-012-0297-0.

213

U. Keil et al. Piracetam Improves Mitochondrial Dysfunction Following Oxidative Stress. — British Journal of Pharmacology 147. № 2 (January 2006): 199–208. https://doi.org/10.1038/sj.bjp.0706459.

214

S. Allen, J. Watson, D. Dawbarn. The Neurotrophins and Their Role in Alzheimer’s Disease.Current Neuropharmacology 9. № 4 (December 2011): 559–573. https://doi.org/10.2174/157015911798376190.

215

Is. Ito et al. Allosteric Potentiation of Quisqualate Receptors by a Nootropic Drug Aniracetam. — Journal of Physiology 424 (May 1990): 533–543. https://doi.org/10.1113/jphysiol.1990.sp018081.

216

R. Knapp et al. Antidepressant Activity of Memory-Enhancing Drugs in the Reduction of Submissive Behavior Model. — European Journal of Pharmacology 440. № 1 (April 5, 2002): 27–35. https://doi.org/10.1016/S0014-2999(02)01338-9.

217

A. Savchenko, N. Zakharova, I. Stepanov. The Phenotropil Treatment of the Consquences of Brain Organic Lesions [Article in Russian]. — Zh Nevrol Psikhiatr Im S S Korsakova 105. № 12 (2005): 22–26. https://www.ncbi.nlm.nih.gov/pubmed/16447562.

218

P. Newhouse et al. Intravenous Nicotine in Alzheimer’s Disease: A Pilot Study. — Psychopharmacology (Berlin) 95. № 2 (1988): 171–175. https://doi.org/10.1007/BF00174504.

219

P. Newhouse et al. Nicotine Treatment of Mild Cognitive Impairment: A 6-Month Double-Blind Pilot Clinical Trial. — Neurology 78. № 2 (January 10, 2012): 91–101. https://doi.org/10.1212/WNL.0b013e31823efcbb.

220

W. Linert et al. In Vitro and In Vivo Studies Investigating Possible Antioxidant Actions of Nicotine: Relevance to Parkinson’s and Alzheimer’s Diseases. — Biochimica et Biophysica Acta 1454. № 2 (July 7, 1999): 143–152. https://doi.org/10.1016/S0925-4439(99)00029-0.

221

T. Nagatsu, M. Sawada. Molecular Mechanism of the Relation of Monoamine Oxidase B and Its Inhibitors to Parkinson’s Disease: Possible Implications of Glial Cells. Journal of Neural Transmission. — Supplementum 71 (2006): 53–65. https://www.ncbi.nlm.nih.gov/pubmed/17447416; Cr. Missale et al. Dopamine Receptors: From Structure to Function. — Physiological Reviews 78. № 1 (January 1998): 189–225. https://doi.org/10.1152/physrev.1998.78.1.189.

222

Cl. Binda et al. Crystal Structures of Monoamine Oxidase B in Complex with Four Inhibitors of the N-Propargylaminoindan Class. — Journal of Medicinal Chemistry 47. № 7 (2004): 1767–1774. https://doi.org/10.1021/jm031087c.

223

M. Kumar, J. Andersen. Perspectives on MAO-B in Aging and Neurological Disease: Where Do We Go from Here? — Molecular Neurobiology 30. № 1 (August 2004): 77–89. https://doi.org/10.1385/MN:30:1:077; J. Saura et al. Biphasic and Region-Specific MAO-B Response to Aging in Normal Human Brain. — Neurobiology of Aging 18. № 5 (September — October 1997): 497–507. https://www.ncbi.nlm.nih.gov/pubmed/9390776.

224

E. Heinonen, R. Lammintausta. A Review of the Pharmacology of Selegiline. Acta Neurologica Scandinavica. — Supplementum 136 (1991): 44–59. https://doi.org/10.1111/j.1600–0404.1991.tb05020.x.

225

L. Citrome, J. Goldberg, K. Bl. Portland. Placing Transdermal Selegiline for Major Depressive Disorder into Clinical Context: Number Needed to Treat, Number Needed to Harm, and Likelihood to Be Helped or Harmed. — Journal of Affective Disorders 151. № 2 (November 2013): 409–417. https://doi.org/10.1016/j.jad.2013.06.027.

226

C. Maier, P. Chan. Role of Superoxide Dismutases in Oxidative Damage and Neurodegenerative Disorders. — Neuroscientist 8. № 4 (August 2002): 323–334. https://doi.org/10.1177/107385840200800408.

227

N. Milgram et al. Maintenance on L-Deprenyl Prolongs Life in Aged Male Rats. — Life Sciences 47. № 5 (1990): 415–420. https://doi.org/10.1016/0024–3205(90)90299-7; K. Kitani et al. (-)Deprenyl Increases the Life Span as Well as Activities of Superoxide Dismutase and Catalase but Not of Glutathione Peroxidase in Selective Brain Regions in Fischer Rats. — Annals of the New York Academy of Sciences 717 (June 30, 1994): 60–71. https://doi.org/10.1111/j.1749–6632.1994.tb12073.x.

228

J. Knoll. The Striatal Dopamine Dependency of Life Span in Male Rats. Longevity Study with (-) Deprenyl. — Mechanisms of Ageing and Development 46. № 1–3 (December 1988): 237–262. https://doi.org/10.1016/0047–6374(88)90128-5.

229

J. Knoll. The Striatal Dopamine Dependency.

230

G. Ghirlanda et al. Evidence of Plasma CoQ10-Lowering Effect by HMG-CoA Reductase Inhibitors: A Double-Blind, Placebo-Controlled Study. — Journal of Clinical Pharmacology 33. № 3 (1993): 226–229. https://doi.org/10.1002/j.1552–4604.1993.tb03948.x.

231

S. Jaber, Br. Polster. Idebenone and Neuroprotection: Antioxidant, Pro-Oxidant, or Electron Carrier? — Journal of Bioenergetics and Biomembranes 47. № 1–2 (2014): 111–118. https://doi.org/10.1007/s10863-014-9571-y.

232

X. J. Liu, W. T. Wu. Effects of Ligustrazine, Tanshinone II A, Ubiquinone, and Idebenone on Mouse Water Maze Performance. — Zhongguo Yao Li Xue Bao 20. № 11 (November 1999): 987–990. https://www.ncbi.nlm.nih.gov/pubmed/11270979.

233

K. Murase et al. Stimulation of Nerve Growth Factor Synthesis/Secretion in Mouse Astroglial Cells by Coenzymes. — Biochemistry and Molecular Biology International 30. № 4 (July 1993): 615–621. https://www.ncbi.nlm.nih.gov/pubmed/8401318.

234

N. Noji et al. Simple and Sensitive Method for Pyrroloquinoline Quinone (PQQ) Analysis in Various Foods Using Liquid Chromatography/Electrospray-Ionization Tandem Mass Spectrometry. — Journal of Agricultural and Food Chemistry 55. № 18 (September 5, 2007): 7258–7263. https://doi.org/10.1021/jf070483r.

235

K. Bauerly et al. Pyrroloquinoline Quinone Nutritional Status Alters Lysine Metabolism and Modulates Mitochondrial DNA — Content in the Mouse and Rat. Biochimica et Biophysica Acta 1760. № 11 (November 2006): 1741–1748. https://doi.org/10.1016/j.bbagen.2006.07.009.

236

C. Harris et al. Dietary Pyrroloquinoline Quinone (PQQ) Alters Indicators of Inflammation and Mitochondrial-Related Metabolism in Human Subjects. — The Journal of Nutritional Biochemistry 24. № 12 (December 2013): 2076–2084. https://doi.org/10.1016/j.jnutbio.2013.07.008.

237

K. Bauerly et al. Altering Pyrroloquinoline Quinone Nutritional Status Modulates Mitochondrial, Lipid, and Energy Metabolism in Rats. — PLoS One 6. № 7 (2011): e21779. https://doi.org/10.1371/journal.pone.0021779.

238

K. Nunome et al. Pyrroloquinoline Quinone Prevents Oxidative Stress-Induced Neuronal Death Probably Through Changes in Oxidative Status of DJ-1. — Biological and Pharmaceutical Bulletin 31. № 7 (July 2008): 1321–1326. https://doi.org/10.1248/bpb.31.1321.

239

F. Steinberg, M. Gershwin, R. Rucker. Dietary Pyrroloquinoline Quinone: Growth and Immune Response in BALB/c Mice. — The Journal of Nutrition 124. № 5 (May 1994): 744–753. https://doi.org/10.1093/jn/124.5.744.

240

K. Ohwada et al. Pyrroloquinoline Quinone (PQQ) Prevents Cognitive Deficit Caused by Oxidative Stress in Rats. — Journal of Clinical Biochemistry and Nutrition 42. № 1 (January 2008): 29–34. https://doi.org/10.3164/jcbn.2008005.

241

B. Zhu et al. Pyrroloquinoline Quinone (PQQ) Decreases Myocardial Infarct Size and Improves Cardiac Function in Rat Models of Ischemia and Ischemia/Reperfusion. — Cardiovascular Drugs and Therapy 18. № 6 (November 2004): 421–431. https://doi.org/10.1007/s10557-004-6219-x.

242

P. Puigserver. Tissue-Specific Regulation of Metabolic Pathways Through the Transcriptional Coactivator PGC1-alpha. — International Journal of Obesity 29, Supplement 1 (March 2005): S5–S9. https://doi.org/10.1038/sj.ijo.0802905.

243

Ch. Miodownik et al. Serum Levels of Brain-Derived Neurotrophic Factor and Cortisol to Sulfate of Dehydroepiandrosterone Molar Ratio Associated with Clinical Response to L-Theanine as Augmentation of Antipsychotic Therapy in Schizophrenia and Schizoaffective Disorder Patients. — Clinical Neuropharmacology 34. № 4 (July — August 2011): 155–160. https://doi.org/10.1097/WNF.0b013e318220d8c6.

244

K. Kimura et al. L-Theanine Reduces Psychological and Physiological Stress Responses. — Biological Psychology 74. № 1 (January 2007): 39–45. https://doi.org/10.1016/j.biopsycho.2006.06.006.

245

A. Nobre, A. Rao, G. Owen. L-Theanine, a Natural Constituent in Tea, and Its Effect on Mental State. Asia Pacific Journal of — Clinical Nutrition 17, Supplement 1 (2008): 167–168. https://www.ncbi.nlm.nih.gov/pubmed/18296328.

246

Cr. Haskell et al. The Effects of L-Theanine, Caffeine and Their Combination on Cognition and Mood. — Biological Psychology 77. № 2 (February 2008): 113–122. https://doi.org/10.1016/j.biopsycho.2007.09.008.

247

P.-L. Lai et al. Neurotrophic Properties of the Lion’s Mane Medicinal Mushroom, Hericium erinaceus (Higher Basidiomycetes) from Malaysia. — International Journal of Medicinal Mushrooms 15. № 6 (2013): 539–554. https://doi.org/10.1615/IntJMedMushr.v15.i6.30.

248

L. Hopper. Curcumin Improves Memory and Mood. New UCLA Study Says. — UCLA Newsroom, January 22, 2018, http://newsroom.ucla.edu/releases/curcumin-improves-memory-and-mood-new-ucla-study-says.

249

A. Khajuria, N. Thusu, U. Zutshi. Piperine Modulates Permeability Characteristics of Intestine by Inducing Alterations in Membrane Dynamics: Influence on Brush Border Membrane Fluidity, Ultrastructure and Enzyme Kinetics. — Phytomedicine 9. № 3 (April 2002): 224–231. https://doi.org/10.1078/0944-7113-00114.

250

G.-Ar. Bounda, Y. Feng. Review of Clinical Studies of Polygonum multiflorum Thunb and Its Isolated Bioactive Compounds. — Pharmacognosy Research 7. № 3 (July — September 2015): 225–236. https://doi.org/10.4103/0974–8490.157957.

251

H. Park, N. Zhang, D. K. Park. Topical Application of Polygonum multiflorum Extract Induces Hair Growth of Resting Hair Follicles Through Upregulating Shh and β-catenin Expression in C57BL/6Mice. — Journal of Ethnopharmacology 135. № 2 (May 17, 2011): 369–375. https://doi.org/10.1016/j.jep.2011.03.028; Y. N. Sun et al. Promotion Effect of Constituents from the Root of Polygonum multiflorum on Hair Growth. — Bioorganic & Medicinal Chemistry Letters 23. № 17 (September 1, 2013): 4801–4805. https://doi.org/10.1016/j.bmcl.2013.06.098.

252

Tchounwou et al. Heavy Metal.

253

M. Jaishankar et al. Toxicity, Mechanism and Health Effects of Some Heavy Metals. — Interdisciplinary Toxicology 7. № 2 (June 2014): 60–72. https://doi.org/10.2478/intox-2014-0009.

254

Гематоэнцефалический барьер — своего рода физиологическая преграда, полупроницаемая мембрана, препятствующая проникновению токсинов, микроорганизмов и других веществ из кровотока в ткань мозга. Прим. ред.

255

Lead Poisoning and Health. — World Health Organization (WHO), August 23, 2018, http://www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health.

256

B. Lanphear et al. Low-Level Lead Exposure and Mortality in US Adults: A Population-Based Cohort Study. — The Lancet: Public Health 3. № 4 (April 1, 2018): PE177–E184. https://doi.org/10.1016/S2468-2667(18)30025-2.

257

Таллий называют «ядом отравителей» не потому, что его применяли исключительно шпионы; это излюбленное отравляющее средство многих злоумышленников. Отравление металлом развивается медленно, а симптомы похожи на проявления целого ряда заболеваний. Прим. ред.

258

P. Cvjetko, I. Cvjetko, M. Pavlica. Thallium Toxicity in Humans. — Arh Hig Rada Toksikol 61. № 1 (March 2010): 111–119. https://doi.org/10.2478/10004-1254-61-2010-1976.

259

Базальные ядра — скопления серого вещества в толще больших полушарий головного мозга, участвующие в коррекции программы сложного двигательного акта и формировании эмоционально-аффективных реакций. Прим. ред.

260

J. Pavličkova et al. Uptake of Thallium from Artificially Contaminated Soils by Kale (Brassica oleracea L. var. acephala), — Plant.Soil and Environment 52. № 12 (December 2006): 484–491. https://doi.org/10.17221/3545-PSE.

261

Y. Jia et al. Thallium at the Interface of Soil and Green Cabbage (Brassica oleracea L. var. capitata L.): Soil-Plant Transfer and Influencing SuperHuman_Factors. — Science of the Total Environment 450–51 (April 15, 2013): 140–147. https://doi.org/10.1016/j.scitotenv.2013.02.008.

262

Brassica — род растений семейства капустные (Brassicaceae). Прим. ред.

263

Z. Ning et al. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica oleracea L. Var. Capitata L.) — International Journal of Phytoremediation 17. № 11 (2015): 1097–1104. https://doi.org/10.1080/15226514.2015.1045133.

264

Коул-слоу (Coleslaw) — американский салат, в состав которого входят морковь и капуста.

265

S. K. Park et al. Associations of Blood and Urinary Mercury with Hypertension in U.S. Adults: The NHANES 2003–2006. — Environmental Research 123 (May 2013): 25–32. https://doi.org/10.1016/j.envres.2013.02.003; M. Houston. Role of Mercury Toxicity in Hypertension, Cardiovascular Disease, and Stroke. — Journal of Clinical Hypertension 13. № 8 (August 2011): 621–627. https://doi.org/10.1111/j.1751–7176.2011.00489.x.

266

A. T. Jan et al. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. — International Journal of Molecular Sciences 16. № 12 (2015): 29592–29630. https://doi.org/10.3390/ijms161226183.

267

M. Sears. Chelation: Harnessing and Enhancing Heavy Metal Detoxification — A Review. The Scientific World Journal 2013 (March 14, 2013): 219840. https://doi.org/10.1155/2013/219840.

268

М. Sears. Chelation; A. Becker, K. Soliman. The Role of Intracellular Glutathione in Inorganic Mercury-Induced Toxicity in Neuroblastoma Cells. — Neurochemical Research 34. № 9 (September 2009): 1677–1684. https://doi.org/10.1007/s11064-009-9962-3.

269

R. Dringen. Metabolism and Functions of Glutathione in Brain. — Progress in Neurobiology 62. № 6 (December 2000): 649–671. https://doi.org/10.1016/S0301-0082(99)00060-X.

270

Кофактор — небольшое небелковое соединение (часто ион металла), которое присоединяется к функциональному участку белка и участвует в его биологической деятельности. Такие белки обычно являются ферментами, поэтому кофакторы называют «молекулами-помощниками», участвующими в биохимических превращениях. Прим. ред.

271

D. Townsend, K. Tew, H. Tapiero. The Importance of Glutathione in Human Disease. — Biomedicine & Pharmacotherapy 57. № 3–4 (May — June 2003): 145–155. https://doi.org/10.1016/S0753-3322(03)00043-X.

272

L. Packer, H. Tritschler, Kl. Wessel. Neuroprotection by the Metabolic Antioxidant Alpha-Lipoic Acid. — Free Radical Biology and Medicine 22. № 1–2 (1997): 359–378. https://doi.org/10.1016/s0891-5849(96)00269-9.

273

L. Packer, H. Tritschler, Kl. Wessel. Neuroprotection.

274

D. Ziegler et al. Treatment of Symptomatic Diabetic Polyneuropathy with the Antioxidant Alpha-Lipoic Acid: A 7-Month Multicenter Randomized Controlled Trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. — Diabetes Care 22. № 8 (August 1999): 1296–1301. https://doi.org/10.1111/j.1464–5491.2004.01109.x.

275

M. I. Waly, Z. Humaid Al Attabi, N. Guizani. Low Nourishment of Vitamin C Induces Glutathione Depletion and Oxidative Stress in Healthy Young Adults. — Preventive Nutrition and Food Science 20. № 3 (September 2015): 198–203. https://doi.org/10.3746/pnf.2015.20.3.198.

276

C. Johnston, C. Meyer, J. Srilakshmi. Vitamin C Elevates Red Blood Cell Glutathione in Healthy Adults. — American Journal of Clinical Nutrition 58. № 1 (July 1993): 103–105. https://doi.org/10.1093/ajcn/58.1.103.

277

H. Lihm et al. Vitamin C Modulates Lead Excretion in Rats. — Anatomy & Cell Biology 46. № 4 (2013): 239–245. https://doi.org/10.5115/acb.2013.46.4.239.

278

T. Peternelj, J. Coombes. Antioxidant Supplementation During Exercise Training: Beneficial or Detrimental? — Sports Medicine 41. № 12 (December 1, 2011): 1043–1069. https://doi.org/10.2165/11594400-000000000-00000.

279

Ch. Bridges, R. Zalups. Molecular and Ionic Mimicry and the Transport of Toxic Metals. — Toxicology and Applied Pharmacology 204. № 3 (May 2005): 274–308. https://doi.org/10.1201/9781420059984-c10.

280

V. Frolkis et al. Effect of Enterosorption on Animal Lifespan, Biomaterials. — Artificial Cells and Artificial Organs 17. № 3 (1989): 341–351. https://doi.org/10.3109/10731198909118290.

281

P. Kuusisto et al. Effect of Activated Charcoal on Hypercholesterolaemia. — The Lancet 2. № 8503 (August 16, 1986): 366–367. https://doi.org/10.1016/S0140-6736(86)90054-1.

282

Activated Carbon: An Overview, ScienceDirect. https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/activated-carbon.

283

An. Santini, Al. Ritieni. Aflatoxins: Risk, Exposure and Remediation, in Aflatoxins — Recent Advances and Future Prospects. — ed. Mehdi Razzaghi-Abyaneh (IntechOpen, January 23, 2013). https://www.intechopen.com/books/aflatoxins-recent-advances-and-future-prospects/aflatoxins-risk-exposure-and-remediation.

284

T. Uchikawa et al. Enhanced Elimination of Tissue Methylmercury in Parachlorella beijerinckii-Fed. — Mice.Journal of Toxicological Sciences 36. № 1 (January 2011): 121–126. https://doi.org/10.2131/jts.36.121.

285

D. Kieffer, R. Martin, S. Adams. Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. — Advances in Nutrition 7. № 6 (November 2016): 1111–1121. https://doi.org/10.3945/an.116.013219.

286

Is. Eliaz et al. The Effect of Modified Citrus Pectin on Urinary Excretion of Toxic Elements. — Phytotherapy Research 20. № 10 (October 2006): 849–864. https://doi.org/10.1002/ptr.1953.

287

Vl. Glinsky, Avr. Raz, Modified Citrus Pectin Anti-Metastatic Properties: One Bullet, Multiple Targets. — Carbohydrate Research 344. № 14 (September 28, 2008): 1788–1791. https://doi.org/10.1016/j.carres.2008.08.038.

288

St. De Berg. A Lifesaving Nutrient in Citrus Fruit. — Life Extension, October 2014. https://www.lifeextension.com/magazine/2014/10/whysome-people-need-modified-citrus-pectin/page-01.

289

L.-G. Yu et al. Galectin-3 Interaction with Thomsen-Friedenreich Disaccharide on Cancer-Associated MUC1 Causes Increased Cancer Cell Endothelial Adhesion. — Journal of Biological Chemistry 282. № 1 (January 5, 2007): 773–781. https://doi.org/10.1074/jbc.M606862200; Q. Zhao et al. Circulating Galectin-3 Promotes Metastasis by Modifying MUC1 Localization on Cancer Cell Surface. — Cancer Research 69. № 17 (September 1, 2009): 6799–6806. https://doi.org/10.1158/0008–5472.CAN-09-1096; M. Kolatsi-Joannou et al. Modified Citrus Pectin Reduces Galectin-3 Expression and Disease Severity in Experimental Acute — Kidney Injury.PLoS One 6. № 4 (2011): e18683. https://doi.org/10.1371/journal.pone.0018683; D. Lok et al. Prognostic Value of Galectin-3, a Novel Marker of Fibrosis, in Patients with Chronic Heart Failure: Data from the DEAL-HF Study. — Clinical Research in Cardiology 99. № 5 (May 2010): 323–328. https://doi.org/10.1007/s00392-010-0125-y.

290

G. Lamas et al. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Chelation Therapy. — Journal of the American College of Cardiology 67. № 20 (May 24, 2016): 2411–2418. https://doi.org/10.1016/j.jacc.2016.02.066.

291

M. Sears, K. Kerr, R. Bray. Arsenic, Cadmium, Lead, and Mercury in Sweat: A Systematic Review. — Journal of Environmental and Public Health 2012 (2012): 184745. https://doi.org/10.1155/2012/184745.

292

L. Tucker. Physical Activity and Telomere Length in U.S. Men and Women: An NHANES Investigation. — Preventive Medicine 100 (July 2017): 1451–1451. https://doi.org/10.1016/j.ypmed.2017.04.027.

293

R. Viebahn-Haensler. The Use of Ozone in Medicine. Medicina Biologica, 2002.

294

Z. Rodriguez et al. Preconditioning with Ozone/Oxygen Mixture Induces Reversion of Some Indicators of Oxidative Stress and Prevents Organic Damage in Rats with Fecal Peritonitis. — Inflammation Research 58. № 7 (July 2009): 371–375. https://doi.org/10.1007/s00011-009-0001-2.

295

R. Rowen. Ozone Therapy as a Primary and Sole Treatment for Acute Bacterial Infection: Case. — Medical Gas Research 8. № 3 (July — September 2018): 121–124. https://doi.org/10.4103/2045–9912.241078.

296

Craigslist (www.craigslist.org) — популярный в США сайт, где публикуются объявления о поиске работы, продаже или обмене различных товаров.

297

R. Rowen et al. Rapid Resolution of Hemorrhagic Fever (Ebola) in Sierra Leone with Ozone Therapy. — African Journal of Infectious Diseases (AJID) 10. № 1 (August 1, 2015): 45–59. https://doi.org/10.21010/ajid.v10i1.10.

298

M. Schultz, D. Sinclair. Why NAD(+) Declines During Aging: It’s Destroyed. — Cell Metabolism 23. № 6 (June 14, 2016): 965–966. https://doi.org/10.1016/j.cmet.2016.05.022.

299

Chr. Sheline, M. Behrens, D. Choi. Zinc-Induced Cortical Neuronal Death: Contribution of Energy Failure Attributable to Loss of NAD+ and Inhibition of Glycolysis. — Journal of Neuroscience 20. № 9 (May 1, 2000): 3139–3146. https://doi.org/10.1523/JNEUROSCI.20-09-03139.2000.

300

L. Guarente. Sirtuins in Aging and Disease. — Cold Spring Harbor Symposia on Quantitative Biology 72 (2007): 483–488. https://doi.org/10.1101/sqb.2007.72.024.

301

E. Michishita et al. SIRT6 Is a Histone H3 Lysine 9 Deacetylase — That Modulates Teomeric Chromatin. Nature 452. № 7186 (March 27, 2008): 492–496. https://doi.org/10.1038/nature06736.

302

H. Yang et al. Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival. — Cell 130. № 6 (September 21, 2007): 1095–1107. https://doi.org/10.1016/j.cell.2007.07.035.

303

S. Wang et al. Cellular NAD Replenishment Confers Marked Neuroprotection Against Ischemic Cell Death: Role of Enhanced DNA Repair. — Stroke 39. № 9 (September 2008): 2587–2595. https://doi.org/10.1161/STROKEAHA.107.509158.

304

S. Shall. ADP-Ribose in DNA Repair: A New Component of DNA Excision Repair. — Advances in Radiation Biology 11 (1984): 1–69 https://doi.org/10.1016/B978-0-12-035411-5.50007-1.

305

S. Shall. ADP-Ribose.

306

Ev. F. Fang et al. NAD Replenishment Improves Lifespan and Healthspan in Ataxia Telangiectasia Models via Mitophagy and DNA Repair. — Cell Metabolism 24. № 4 (October 11, 2016): 578, fig. 7. https://doi.org/10.1016/j.cmet.2016.09.004.

307

H. Massudi et al. Age-Associated Changes in Oxidative Stress and NAD Metabolism in Human Tissue. — PLoS One 7. № 7 (July 2012): e42357, fig. 4. https://doi.org/10.1371/journal.pone.0042357.

308

Н. Massudi et al. Age-Associated Changes, e42357.

309

J. Yoshino et al. Nicotinamide Mononucleotide, a Key NAD(+) Intermediate, Treats the Pathophysiology of Diet- and Age-Induced Diabetes in Mice. — Cell Metabolism 14. № 4 (October 5, 2011): 528–536. https://doi.org/10.1016/j.cmet.2011.08.014.

310

P. Bai et al. PARP-1 Inhibition Increases Mitochondrial Metabolism Through SIRT1 Activation. Cell Metabolism 13. № 4 (April 6, 2011): 461–468. https://doi.org/10.1016/j.cmet.2011.03.004.

311

H. Zhang et al. NAD Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span. Science 352. № 6292 (June 17, 2016): 1436–1443. https://doi.org/10.1126/science.aaf2693.

312

S. Hayashida et al. Fasting Promotes the Expression of SIRT1, an NAD+-Dependent Protein deacetylase, via Activation of PPAR? in Mice. — Molecular and Cellular Biochemistry 339. № 1–2 (June 2010): 285–292. https://doi.org/10.1007/s11010-010-0391-z.

313

D. Williams et al. Oxaloacetate Supplementation Increases Lifespan in Caenorhabditis elegans Through an AMPK/FOXO-Dependent Pathway. — Aging Cell 8. № 6 (December 2009): 765–768. https://doi.org/10.1111/j.1474–9726.2009.00527.x.

314

Биоидентичный — схожий по строению и свойствам с каким-либо веществом, вырабатываемым в организме.

315

C. Zouboulis, E. Makrantonaki. Hormonal Therapy of Intrinsic Aging. — Rejuvenation Research 15., № 3 (June 2012): 302–312, https://doi.org/10.1089/rej.2011.1249.

316

C. Sites. Bioidentical Hormones for Menopausal Therapy. — Women’s Health 4. № 2 (March 2008): 163–171, https://doi.org/10.2217/17455057.4.2.163.

317

P. Snyder et al. Effect of Testosterone Treatment on Body Composition and Muscle Strength in Men Over 65 Years of Age. — Journal of Clinical Endocrinology & Metabolism 84. № 8 (August 1, 1999): 2647–2653, https://doi.org/10.1210/jcem.84.8.5885.

318

A. Kenny et al. Effects of Transdermal Testosterone on Cognitive Function and Health Perception in Older Men with Low Bioavailable Testosterone Levels. — Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 57. № 5 (May 2002): M321–25, https://doi.org/10.1093/gerona/57.5.M321.

319

G. Rosano et al. Low Testosterone Levels Are Associated with Coronary Artery Disease in Male Patients with Angina. — International Journal of Impotence Research 19. № 2 (March — April 2007): 176–182. https://doi.org/10.1038/sj.ijir.3901504.

320

R. Sharma et al. Normalization of Testosterone Level Is Associated with Reduced Incidence of Myocardial Infarction and Mortality In Men. — European Heart Journal 36. № 40 (October 21, 2015): 2706–2715. https://doi.org/10.1093/eurheartj/ehv346.

321

N. Samaras et al. Off-Label Use of Hormones as an Antiaging Strategy: — A Review. Clinical Interventions in Aging 9 (July 23, 2014): 1175–1186. https://doi.org/10.2147/CIA.S48918.

322

J. Rossouw et al. Risks and Benefits of Estrogen Plus Progestin in Healthy Postmenopausal Women: Principal Results from the Women’s Health Initiative Randomized Controlled Trial. — JAMA 288. № 3 (July 17, 2002): 321–333. https://doi.org/10.1001/jama.288.3.321.

323

Samaras et al. Off-Label Use.

324

M. Castleman. The Prescription for a Longer Life? More Sex. Psychology Today. May 15, 2017. https://www.psychologytoday.com/ca/blog/all-about-sex/201705/the-prescription-longer-life-more-sex.

325

S. Yen. Dehydroepiandrosterone Sulfate and Longevity: New Clues for an Old Friend. — Proceedings of the National Academy of Sciences of the USA 98. № 15 (2001): 8167–8169. https://doi.org/10.1073/pnas.161278698.

326

A. Genazzani, Ch. Lanzoni, A. Genazzani. Might DHEA Be Considered a Beneficial Replacement Therapy in the Elderly? — Drugs & Aging 24. № 3 (2007): 173–185. https://doi.org/10.2165/00002512-200724030-00001.

327

M. Basar et al. Relationship Between Serum Sex Steroids and Aging Male Symptoms Score and International Index of Erectile Function. — Urology 66. № 3 (September 2005): 597–601. https://doi.org/10.1016/j.urology.2005.03.060.

328

Ch. Elabd et al. Oxytocin Is an Age-Specific Circulating Hormone That Is Necessary for Muscle Maintenance and Regeneration. — Nature Communications 5 (2014): 4082. https://doi.org/10.1038/ncomms5082.

329

J.-J. Legros. Inhibitory Effect of Oxytocin on Corticotrope Function in Humans: Are Vasopressin and Oxytocin Ying-Yang Neurohormones? — Psychoneuroendocrinology 26. № 7 (2001): 649–655. https://doi.org/10.1016/S0306-4530(01)00018-X.

330

Нейроэкономика — междисциплинарное направление в науке на пересечении предметов экономической теории, нейробиологии и психологии. Изучает процесс принятия решений при выборе альтернативных вариантов, распределении риска и вознаграждения. Использует экономические модели для изучения мозга и достижения нейробиологии для построения экономических моделей. Прим. ред.

331

Th. Travison et al. A Population-Level Decline in Serum Testosterone Levels in American Men. — Journal of Clinical Endocrinology & Metabolism 92. № 1 (January 2007): 196–202. https://doi.org/10.1210/jc.2006–1375.

332

J. Volek et al. Testosterone and Cortisol in Relationship to Dietary Nutrients and Resistance Exercise. — Journal of Applied Physiology 82. № 1 (1997): 49–54. https://doi.org/10.1152/jappl.1997.82.1.49.

333

Джон Харви Келлог (1852–1943) — американский врач. Сильвестер Грэм (1794–1851) — американский священник, пропагандировавший правила питания, предназначенные для улучшения здоровья, и придумавший рецептуру для изготовления муки из почти необработанной пшеницы. Из такой муки выпекали хлеб и крекеры. И Грэм, и Келлог отрицательно относились к физическим удовольствиям, в том числе к потреблению вкусной пищи, полагая, что из-за подобной еды у людей обостряется чувствительность и усиливается половое влечение, которое, в свою очередь, расценивалось обоими как одна из главных причин многих проблем общества.

334

E. Hämäläinen et al. Diet and Serum Sex Hormones in Healthy Men. — Journal of Steroid Biochemistry 20. № 1 (1984): 459–464. https://doi.org/10.1016/0022–4731(84)90254-1.

335

E. Wehr et al. Association of Vitamin D Status with Serum Androgen Levels in Men. — Clinical Endocrinology 73. № 2 (August 2010): 243–248. https://doi.org/10.1111/j.1365–2265.2009.03777.x.

336

S. Jobling et al. A Variety of Environmentally Persistent Chemicals, Including Some Phthalate Plasticizers, Are Weakly Estrogenic. Environmental Health Perspectives 103. № 6 (June 1995): 582–587. https://doi.org/10.1289/ehp.95103582.

337

E. Routledge et al. Some Alkyl Hydroxy Benzoate Preservatives (Parabens) — Are Estrogenic. Toxicology and Applied Pharmacology 153. № 1 (December 1998): 12–19. https://doi.org/10.1006/taap.1998.8544.

338

K. Woznicki. Birth Control Pills Put Brakes on Women’s Sex Drive. — WebMD, May 5, 2010. https://www.webmd.com/sex/birth-control/news/20100505/birth-control-pills-put-brakes-on-womens-sex-drive#2.

339

C. Panzer et al. Impact of Oral Contraceptives on Sex Hormone-Binding Globulin androgen Levels: A Retrospective Study in Women with Sexual Dysfunction. — Journal of Sexual Medicine 3. № 1 (January 2006): 104–113. https://doi.org/10.1111/j.1743–6109.2005.00198.x.

340

Поликистоз яичников — состояние женского организма, при котором происходит разрастание доброкачественного характера внутри половых желез, обусловленное нарушением функций составляющих эндокринной системы. Прим. ред.

341

W. Kraemer et al. Endogenous Anabolic Hormonal and Growth Factor Responses to Heavy Resistance Exercises in Males and Females. — International Journal of Sports Medicine 12. № 2 (May 1991): 228–235. https://doi.org/10.1055/s-2007-1024673.

342

P. Wahl. Hormonal and Metabolic Responses to High Intensity Interval Training. — Journal of Sports Medicine & Doping Studies 3 (January 24, 2013): e132. https://doi.org/10.4172/2161–0673.1000e132.

343

European Society of Cardiology. Endurance but Not Resistance Training Has Anti-Aging Effects. — EurekAlert! November 27, 2018. https://www.eurekalert.org/pub_releases/2018-11/esoc-ebn112618.php.

344

S. Ranabir, R. Keisam. Stress and Hormones. — Indian Journal of Endocrinology and Metabolism 15. № 1 (2011): 18–22. https://doi.org/10.4103/2230–8210.77573.

345

A. Dollins et al. L-Tyrosine Ameliorates Some Effects of Lower Body Negative Pressure Stress. Physiology & Behavior 57. № 2 (February 1995): 223–230. https://doi.org/10.1016/0031–9384(94)00278-D.

346

Y.-F. Chen, M. Gerdes. Deadly Connection: Hypothyroidism and Heart Disease. Diagnostic and Interventional Cardiology, March 15, 2007. https://www.dicardiology.com/article/deadly-connection-hypothyroidism-and-heart-disease.

347

B. Gefvert. Medical Lasers/Neuroscience: Photobiomodulation and the Brain: Traumatic Brain Injury and Beyond. — BioOptics World, May 9, 2016. https://www.bioopticsworld.com/articles/print/volume-9/issue-5/medical-lasers-neuroscience-photobiomodulation-and-the-brain-traumatic-brain-injury-and-beyond.html.

348

L. Kuo et al. Chronic Stress, Combined with a High-Fat/High-Sugar Diet, Shifts Sympathetic Signaling Toward Neuropeptide Y and Leads to Obesity and the Metabolic Syndrome. — Annals of the New York Academy of Sciences 1148 (December 2008): 232–237. https://doi.org/10.1196/annals.1410.035.

349

K. Frayn. Visceral Fat and Insulin Resistance — Causative or Cor-relative? — British Journal of Nutrition 83, Supplement 1 (March 2000): S71–77. https://doi.org/10.1017/S0007114500000982.

350

K. Kishida et al. Relationships Between Circulating Adiponectin Levels and Fat Distribution in Obese Subjects. — Journal of Atherosclerosis and Thrombosis 18. № 7 (2011): 592–595. https://doi.org/10.5551/jat.7625.

351

Y. Matsushita et al. Adiponectin and Visceral Fat Associate with Cardiovascular Risk Factors. — Obesity 21 (2014): 287–291. https://doi.org/10.1002/oby.20425.

352

J. Orr et al. Large Artery Stiffening with Weight Gain in Humans: Role of Visceral Fat Accumulation. — Hypertension 51. № 6 (June 2008): 1519–1524. https://doi.org/10.1161/HYPERTENSIONAHA.108.112946.

353

Ch. Kepler et al. Substance P Stimulates Production of Inflammatory Cytokines in Human Disc Cells. — Spine 38. № 21 (October 1, 2013): E1291–1299. https://doi.org/10.1097/BRS.0b013e3182a42bc2.

354

M. Zhan et al. Upregulated Expression of Substance P (SP) and NK1R in Eczema and SP-Induced Mast Cell Accumulation. — Cell Biology and Toxicology 33. № 4 (August 2017): 389–405. https://doi.org/10.1007/s10565-016-9379-0; B. Amatya et al. Expression of Tachykinins and Their Receptors in Plaque Psoriasis with Pruritus. British Journal of Dermatology 164. № 5 (May 2011): 1023–1029. https://doi.org/10.1111/j.1365–2133.2011.10241.x.

355

T. O’Connor et al. The Role of Substance P in Inflammatory Disease. — Journal of Cellular Physiology 201. № 2 (November 2004): 167–180. https://doi.org/10.1002/jcp.20061.

356

M. Muñoz, R. Coveñas. Involvement of Substance P and the NK-1 Receptor in Cancer Progression. — Peptides 48 (October 2013): 1–9. https://doi.org/10.1016/j.peptides.2013.07.024.

357

P. Rameshwar, P. Gascón. Substance P (SP) Mediates Production of Stem Cell Factor and Interleukin-1 in Bone Marrow Stroma: Potential Autoregulatory Role for These Cytokines in SP Receptor Expression and Induction. — Blood 86. № 2 (July 1995): 482–490. https://www.ncbi.nlm.nih.gov/pubmed/7541664.

358

Th. Burks, St. Buck, M. Miller. Mechanisms of Depletion of Substance P by Capsaicin. Federation Proceedings 44. № 9 (1985): 2531–2534. https://www.ncbi.nlm.nih.gov/pubmed/2581820.

359

P. Anand, K. Bley. Topical Capsaicin for Pain Management: Therapeutic Potential and Mechanisms of Action of the New High-Concentration Capsaicin 8% Patch. — British Journal of Anaesthesia 107. № 4 (October 2011): 490–502. https://doi.org/10.1093/bja/aer260.

360

Галитоз — неприятный запах изо рта.

361

Sh. Asokan et al. Effect of Oil Pulling on Streptococcus mutans Count in Plaque and Saliva Using Dentocult SM Strip Mutans Test: A Randomized, Controlled, Triple-Blind Study. — Journal of Indian Society of Pedodontics and Preventive Dentistry 26. № 1 (March 2008): 12–17. https://www.ncbi.nlm.nih.gov/pubmed/18408265.

362

Sh. Asokan, R. Chamundeswari, P. Emmadi. Effect of Oil Pulling on Plaque Induced Gingivitis: A Randomized, Controlled, Triple-Blind Study. — Indian Journal of Dental Research 20. № 1 (January 2009): 47–51. https://doi.org/10.4103/0970–9290.49067.

363

Asokan, Chamundeswari, Emmadi. Effect of Oil Pulling.

364

M. Nair et al. Antibacterial Effect of Caprylic Acid and Monocaprylin on Major Bacterial Mastitis Pathogens. — Journal of Dairy Science 88. № 10 (October 2005): 3488–3495. https://doi.org/10.3168/jds.S0022-0302(05)73033-2.

365

Foundation of the National Lipid Association, Learn Your Lipids, http://www.learnyourlipids.com/lipids/.

366

R. Hulankova, G. Borilova, I. Steinhauserova. Combined Antimicrobial Effect of Oregano Essential Oil and Caprylic Acid in Minced Beef. — Meat Science 95. № 2 (October 2013): 190–194. https://doi.org/10.1016/j.meatsci.2013.05.003.

367

Транскутанная электрическая нервная стимуляция — стимуляция нервов и мускулатуры посредством электродов. Холодный лазер — лазер, воздействие которого не вызывает значительного нагрева тканей.

368

V. Brunt et al. Suppression of the Gut Microbiome Ameliorates Age-Related Arterial Dysfunction and Oxidative Stress in Mice. — Journal of Physiology 597. № 9 (May 2019): 2361–2378. https://doi.org/10.1113/JP277336.

369

R. Sender, Sh. Fuchs, R. Milo. Revised Estimates for the Number of Human and Bacteria Cells in the Body. — PLoS Biology 14. № 8 (August 19, 2016): e1002533. https://doi.org/10.1371/journal.pbio.1002533.

370

J. Koenig et al. Succession of Microbial Consortia in the Developing Infant Gut Microbiome. — Proceedings of the National Academy of Sciences of the USA 108, Supplement 1 (March 15, 2011): 4578–4585. https://doi.org/10.1073/pnas.1000081107.

371

M. Wolff, M. Broadhurst, P. Loke. Helminthic Therapy: Improving Mucosal Barrier Function. — Trends in Parasitology 28. № 5 (May 2012): 187–194. https://doi.org/10.1016/j.pt.2012.02.008.

372

H. Helmby. Human Helminth Therapy to Treat Inflammatory Disorders — Where Do We Stand? — BMC Immunology 16. № 12 (March 26, 2015). https://doi.org/10.1186/s12865-015-0074-3.

373

G. Rattue. Autoimmune Disease Rates Increasing. — Medical News Today, June 22, 2012. https://www.medicalnewstoday.com/articles/246960.php.

374

M. Matsumoto et al. Longevity in Mice Is Promoted by Probiotic-Induced Suppression of Colonic Senescence Dependent on Upregulation of Gut Bacterial Polyamine Production. — PLoS One 6. № 8 (2011): e23652. https://doi.org/10.1371/journal.pone.0023652.

375

M. Dominguez-Bello et al. Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota Across Multiple Body Habitats in Newborns. — Proceedings of the National Academy of Sciences of the USA. 107 (June 29, 2010): 11971–11975. https://doi.org/10.1073/pnas.1002601107.

376

P. Jeurink et al. Human Milk: A Source of More Life Than We Imagine. — Beneficial Microbes 4. № 1 (March 2013): 17–30. https://doi.org/10.3920/BM2012.0040.

377

M. Azad et al. Gut Microbiota of Healthy Canadian Infants: Profiles by Mode of Delivery and Infant Diet at 4 Months. — Canadian Medical Association Journal 185. № 5 (March 19, 2013): 385–394. https://doi.org/10.1503/cmaj.121189.

378

Koenig et al. Succession of Microbial Consortia.

379

Q. Nguyen et al. The Impact of the Gut Microbiota on Humoral Immunity to Pathogens and Vaccination in Early Infancy. — PLoS Pathogens 12. № 2 (December 2016): e1005997. https://doi.org/10.1371/journal.ppat.1005997.

380

E. Decker, M. Hornef, S. Stockinger. Cesarean Delivery Is Associated with Celiac Disease but Not Inflammatory Bowel Disease in Children. — Gut Microbes 2 (2011): 91–98. https://doi.org/10.4161/gmic.2.2.15414.

381

A. Langdon, N. Crook, G. Dantas. The Effects of Antibiotics on the Microbiome Throughout Development and Alternative Approaches for Therapeutic Modulation. — Genome Medicine 8 (2016): 39. https://doi.org/10.1186/s13073-016-0294-z.

382

R. Ferrante et al. Histone Deacetylase Inhibition by Sodium Butyrate Chemotherapy Ameliorates the Neurodegenerative Phenotype in Huntington’s Disease Mice. — Journal of Neuroscience 23. № 28 (October 15, 2003): 9418–9427. https://doi.org/10.1523/JNEUROSCI.23-28-09418.2003.

383

M. Ying et al. Sodium Butyrate Ameliorates Histone Hypoacetylation and Neurodegenerative Phenotypes in a Mouse Model for DRPLA. — Journal of Biological Chemistry 281, № 18 (May 5, 2006): 12580–12586. https://doi.org/10.1074/jbc.M511677200.

384

W. Chu. Review Reiterates Fibre’s Prebiotic Benefits in Warding Off Stroke and Diabetes. NUTRAingredients.com, January 11, 2019. https://www.nutraingredients.com/Article/2019/01/09/Review-reiterates-fibre-s-prebiotic-benefits-in-warding-off-stroke-and-diabetes.

385

K. Meyer et al. Carbohydrates, Dietary Fiber, and Incident Type 2 Diabetes in Older Women. — American Journal of Clinical Nutrition 71. № 4 (April 2000): 921–930. https://doi.org/10.1093/ajcn/71.4.921.

386

Y. Park et al. Dietary Fiber Intake and Risk of Breast Cancer in Postmenopausal Women: The National Institutes of Health — AARP Diet and Health Study. — American Journal of Clinical Nutrition 90. № 3 (September 2009): 664–671. https://doi.org/10.3945/ajcn.2009.27758.

387

J. Lattimer, M. Haub. Effects of Dietary Fiber and Its Components on Metabolic Health. — Nutrients 2. № 12 (December 2010): 1266–1289. https://doi.org/10.3390/nu2121266.

388

Ch. Chen et al. Therapeutic Effects of Soluble Dietary Fiber Consumption on Type 2 Diabetes Mellitus. — Experimental and Therapeutic Medicine 12. № 2 (August 2016): 1232–1242. https://doi.org/10.3892/etm.2016.3377.

389

Chen et al. Therapeutic Effects.

390

K. de Punder, L. Pruimboom. The Dietary Intake of Wheat and Other Cereal Grains and Their Role in Inflammation. — Nutrients 5. № 3 (2013): 771–787. https://doi.org/10.3390/nu5030771.

391

A. Pusztai et al. Antinutritive Effects of Wheat-Germ Agglutinin and Other N-Acetylglucosamine-Specific Lectins. British Journal of Nutrition 70. № 1 (July 1993): 313–321. https://doi.org/10.1079/BJN19930124.

392

M. Streppel et al. Dietary Fiber Intake in Relation to Coronary Heart Disease and All-Cause Mortality over 40 y: The Zutphen Study. — American Journal of Clinical Nutrition 88. № 4 (October 2008): 1119–1125. https://doi.org/10.1093/ajcn/88.4.1119.

393

Park et al. Dietary Fiber Intake.

394

D. Threapleton et al. Dietary Fibre Intake and Risk of Cardiovascular Disease: Systematic Review and Meta-Analysis. — BMJ 347 (December 19, 2013): f6879. https://doi.org/10.1136/bmj.f6879.

395

D. Topping, M. Fukushima, A. Bird. Resistant Starch as a Prebiotic and Synbiotic: State of the Art. — Proceedings of the Nutrition Society 62. № 1 (February 2003): 171–176. https://doi.org/10.1079/PNS2002224.

396

A. Aliasgharzadeh et al. Resistant Dextrin, as a Prebiotic, Improves Insulin Resistance and Inflammation in Women with Type 2 Diabetes: A Randomised Controlled Clinical Trial. — British Journal of Nutrition 113. № 2 (January 28, 2015): 321–330. https://doi.org/10.1017/S0007114514003675.

397

University of Colorado Denver. Diet of Resistant Starch Helps the Body Resist Colorectal Cancer. — Science Daily, February 19, 2013, www.sciencedaily.com/releases/2013/02/130219140716.htm.

398

K. Maki et al. Resistant Starch from High-Amylose Maize Increases Insulin Sensitivity in Overweight and Obese Men. — Journal of Nutrition 142. № 4 (April 2012): 717–723. https://doi.org/10.3945/jn.111.152975.

399

Ch. Gentile et al. Resistant Starch and Protein Intake Enhances Fat Oxidation and Feelings of Fullness in Lean and Overweight/Obese Women. — Nutrition Journal 14 (October 29, 2015): 113. https://doi.org/10.1186/s12937-015-0104-2.

400

A. Andoh et al. Comparison of the Gut Microbial Community Between Obese and Lean Peoples Using 16S Gene Sequencing in a Japanese Population. — Journal of Clinical Biochemistry and Nutrition 59. № 1 (July 2016): 65–70. https://doi.org/10.3164/jcbn.15–152.

401

A. Аndoh et al. Comparison.

402

P. Turnbaugh et al. A Core Gut Microbiome in Obese and Lean Twins. — Nature 457. № 7228 (January 22, 2009): 480–484. https://doi.org/10.1038/nature07540.

403

S. Van Hemert et al. The Role of the Gut Microbiota in Mood and Behavior. Whether Psychobiotics Can Become an Alternative in Therapy in Psychiatry? — European Psychiatry 33, Supplement (March 2016): S26. https://doi.org/10.1016/j.eurpsy.2016.01.842.

404

A. Fasano. Leaky Gut and Autoimmune Diseases. Clinical Reviews in Allergy and Immunology 42. № 1 (February 2012): 71–78. https://doi.org/10.1007/s12016-011-8291-x.

405

B. Schroeder et al. Bifidobacteria or Fiber Protects Against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. — Cell Host & Microbe 23. № 1 (January 10, 2018): 27–40. https://doi.org/10.1016/j.chom.2017.11.004.

406

Van Hemert et al. Role of the Gut Microbiota.

407

A. Evrensel, M. Ceylan. The Gut-Brain Axis: The Missing Link in Depression. — Clinical Psychopharmacology and Neuroscience 13. № 3 (December 31, 2015): 239–244. https://doi.org/10.9758/cpn.2015.13.3.239.

408

A. Moeller et al. Social Behavior Shapes the Chimpanzee Pan-Microbiome. — Science Advances 2. № 1 (January 15, 2016): e1500997. https://doi.org/10.1126/sciadv.1500997.

409

J. Gallagher. How Bacteria Are Changing Your Mood. — BBC News, April 24, 2018. https://www.bbc.com/news/health-43815370.

410

Kirsten Tillisch et al. Brain Structure and Response to Emotional Stimuli as Related to Gut Microbial Profiles in Healthy Women. — Psychosomatic Medicine 79. № 8 (October 2017): 905–913. https://doi.org/10.1097/PSY.0000000000000493.

411

M. Bailey et al. Exposure to a Social Stressor Alters the Structure of the Intestinal Microbiota: Implications for Stressor-Induced Immunomodulation. Brain, — Behavior and Immunity 25. № 3 (March 2011): 397–407. https://doi.org/10.1016/j.bbi.2010.10.023.

412

P. Konturek, Th. Brzozowski, S. Konturek. Stress and the Gut: Pathophysiology, Clinical Consequences, Diagnostic Approach and Treatment Options. — Journal of Physiology and Pharmacology 62. № 6 (December 2011): 591–599. https://www.ncbi.nlm.nih.gov/pubmed/22314561.

413

Секвенирование — метод определения нуклеотидной последовательности ДНК и РНК. Тестирование используется для определения генетических повреждений (мутаций) в ДНК, которые являются причиной наследственных болезней, наследственных предрасположенностей или особенностей организма. Прим. ред.

414

M. Graham et al. Collagen Synthesis by Human Intestinal Smooth Muscle Cells in Culture. — Gastroenterology 92. № 2 (February 1987): 400–405. https://doi.org/10.1016/0016–5085(87)90134-X.

415

Факторы роста — вещества органической и неорганической природы, которые бактерии не могут самостоятельно синтезировать, но они необходимы для их роста и развития. В качестве факторов роста выступают аминокислоты, азотистые основания, витамины, жирные кислоты, железоприны и многие другие соединения. Прим. ред.

416

K. Herbst, Th. Rutledge. Pilot Study: Rapidly Cycling Hypobaric Pressure Improves Pain After 5 Days in Adiposis Dolorosa. — Journal of Pain Research 3 (August 20, 2010): 147–153. https://doi.org/10.2147/JPR.S12351.

417

Вращательная манжета — совокупность мышц и сухожилий в плечевом суставе.

418

R. Newnham. Essentiality of Boron for Health Bones and Joints. — Environmental Health Perspectives 102, Supplement 7 (November 1994): 83–85. https://doi.org/10.1289/ehp.94102s783.

419

S. Demirci et al. Boron Increases the Cell Viability of Mesenchymal Stem Cells After Long-Term Cryopreservation. — Cryobiology 68. № 1 (February 2014): 139–146. https://doi.org/10.1016/j.cryobiol.2014.01.010.

420

G. Mogoşanu et al. Calcium Fructoborate for Bone and Cardiovascular Health. — Biological Trace Element Research 172. № 2 (August 2016): 277–281. https://doi.org/10.1007/s12011-015-0590-2; Zb. Pietrzkowski et al. Short-Term Efficacy of Calcium Fructoborate on Subjects with Knee Discomfort: A Comparative, Double-Blind, Placebo-Controlled Clinical Study. — Clinical Interventions in Aging 9 (June 5, 2014): 895–899. https://doi.org/10.2147/CIA.S64590.

421

E. Abdik et al. Suppressive Role of Boron on Adipogenic Differentiation and Fat Deposition in Human Mesenchymal Stem Cells. — Biological Trace Element Research 188. № 2 (April 2019): 384–392. https://doi.org/10.1007/s12011-018-1428-5.

422

A. Trafton. Fasting Boosts Stem Cells’ Regenerative Capacity. — MIT News, May 3, 2018. http://news.mit.edu/2018/fasting-boosts-stem-cells-regenerative-capacity-0503.

423

M. Cerletti et al. Short-Term Calorie Restriction Enhances Skeletal Muscle Stem Cell Function. — Cell Stem Cell 10. № 5 (May 4, 2012): 515–519. https://doi.org/10.1016/j.stem.2012.04.002.

424

T. Lo et al. Glucose Reduction Prevents Replicative Senescence and Increases Mitochondrial Respiration in Human Mesenchymal Stem Cells. — Cell Transplantation 30. № 6 (2011): 813–825. https://doi.org/10.3727/096368910X539100.

425

M. Valero et al. Eccentric Exercise Facilitates Mesenchymal Stem Cell Appearance in Skeletal Muscle. — PLoS One 7. № 1 (January 11, 2012): e29760. https://doi.org/10.1371/journal.pone.0029760.

426

J. Hucklenbroich et al. Aromatic-Turmerone Induces Neural Stem Cell Proliferation in vitro and in vivo. — Stem Cell Research & Therapy 5. № 4 (September 26, 2014): 100. https://doi.org/10.1186/scrt500.

427

D. Yoon et al. SIRT1 Directly Regulates SOX2 to Maintain Self-Renewal and Multipotency in Bone Marrow-Derived Mesenchymal Stem Cells. — Stem Cells 32. № 12 (December 2014): 3219–3231. https://doi.org/10.1002/stem.1811.

428

Natural Ways to Increase Stem Cell Activity. — Stem Cell The Magazine, October 18, 2017. https://stemcellthemagazine.com/2017/10/natural-ways-to-increase-stem-cell-activity/.

429

Ts.-J. Ho et al. Tai Chi Intervention Increases Progenitor CD34(+) Cells in Young Adults. — Cell Transplantation 23. № 4–5 (2014): 613–620. https://doi.org/10.3727/096368914X678355.

430

Koh. A Good Night’s Sleep Keeps Your Stem Cells Young. — Deutsches Krebsforschungszentrum, February 18, 2015. https://www.dkfz.de/en/presse/pressemitteilungen/2015/dkfz-pm-15-08-A-good-nights-sleep-keeps-your-stem-cells-young.php; H. Elkhenany. Tissue Regeneration: Impact of Sleep on Stem Cell Regenerative Capacity. — Life Sciences 214 (December 1, 2018): 51–61. https://doi.org/10.1016/j.lfs.2018.10.057.

431

I. Gruenwald et al. Shockwave Treatment of Erectile Dysfunction. — Therapeutic Advances in Urology 5. № 2 (April 2013): 95–99. https://doi.org/10.1177/1756287212470696.

432

Росомаха — герой комиксов издательства Marvel Comics. Он обладает сверхчеловеческими способностями, в частности способностью к регенерации, которая позволяет ему выживать после тяжелых ранений, болезней, отравлений, смертельных для обычного человека. Прим. ред.

433

M. Ratajczak et al. Very Small Embryonic-Like Stem Cells (VSELs) Represent a Real Challenge in Stem Cell Biology: Recent Pros and Cons in the Midst of a Lively Debate. — Leukemia 28 (2014): 473–484. https://doi.org/10.1038/leu.2013.255.

434

D. Jaworski, L. Pérez-Martínez. Tissue Inhibitor of Metalloproteinase-2 (TIMP-2) Expression Is Regulated by Multiple Neural Differentiation Signals. — Journal of Neurochemistry 98. № 1 (July 2006): 234–247. https://doi.org/10.1111/j.1471–4159.2006.03855.x.

435

Y. Li et al. Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-Tumor Activity. — Cell Stem Cell 23. № 2 (August 2, 2018): P181–192.E5. https://doi.org/10.1016/j.stem.2018.06.002.

436

R. Haridy. Anti-Aging Discovery Reveals Importance of Immune System in Clearing Old Cells. — New Atlas, January 1, 2019. https://newatlas.com/immune-system-aging-senescent-cells/57835/.

437

Natural Killer Cell. — ScienceDaily. https://www.sciencedaily.com/terms/natural_killer_cell.htm.

438

Q. Li et al. Effect of Phytoncide from Trees on Human Natural Killer Cell Function. — International Journal of Immunopathology and Pharmacology 22. № 4 (October — December 2009): 951–959. https://doi.org/10.1177/039463200902200410.

439

E. Anyanwu et al. The Neurological Significance of Abnormal Natural Killer Cell Activity in Chronic Toxigenic Mold Exposures. — Scientific World Journal 13. № 3 (November 13, 2003): 1128–1137. https://doi.org/10.1100/tsw.2003.98.

440

S. Villeda et al. Young Blood Reverses Age-Related Impairments in Cognitive Function and Synaptic Plasticity in Mice. — Nature Medicine 20 (2014): 659–663. https://doi.org/10.1038/nm.3569.

441

Ферритин — сложный белковый комплекс, выполняющий роль основного внутриклеточного депо железа у человека и животных. Прим. ред.

442

M. Kuro-o et al. Mutation of the Mouse Klotho Gene Leads to a Syndrome Resembling Ageing. — Nature 390. № 6655 (November 6, 1997): 45–51. https://doi.org/10.1038/36285.

443

H. Kurosu et al. Suppression of Aging in Mice by the Hormone Klotho. — Science 309. № 5742 (September 16, 2005): 1829–1833. https://doi.org/10.1126/science.1112766.

444

R. Semba et al. Plasma Klotho and Mortality Risk in Older Community-Dwelling Adults, Journals of Gerontology Series A. — Biological Sciences & Medical Sciences 66. № 7 (July 2011): 794–800. https://doi.org/10.1093/gerona/glr058.

445

D. Arking et al. Association of Human Aging with a Functional Variant of Klotho. — Proceedings of the National Academy of Sciences of the USA 99. № 2 (January 2002): 856–861. https://doi.org/10.1073/pnas.022484299.

446

J. Yokoyama et al. Variation in Longevity Gene KLOTHO Is Associated with Greater Cortical Volumes. — Annals of Clinical and Translational Neurology 2. № 3 (January 2015): 215–230. https://doi.org/10.1002/acn3.161.

447

M.-Ch. Hu et al. Klotho Deficiency Is an Early Biomarker of Renal Ischemia-Reperfusion Injury and Its Replacement Is Protective. — Kidney International 78. № 12 (December 2010): 1240–51. https://doi.org/10.1038/ki.2010.328; M.-Ch. Hu et al. Recombinant Klotho May Be Prophylactic and Therapeutic for Acute to Chronic Kidney Disease Progression and Uremic Cardiomyopathy. — Kidney International 91. № 5 (January 2017): 1104–1114. https://doi.org/10.1016/j.kint.2016.10.034.

448

R. Semba et al. Klotho in the Cerebrospinal Fluid of Adults With and Without Alzheimer’s Disease. — Neuroscience Letters 558 (January 2014): 37–40. https://doi.org/10.1016/j.neulet.2013.10.058.

449

J. Leon et al. Peripheral Elevation of a Klotho Fragment Enhances Brain Function and Resilience in Young, Aging and Alpha-Synuclein Transgenic Mice. — Cell Reports 20: 1360–1371. https://doi.org/10.1016/j.celrep.2017.07.024.

450

Sh. Doi et al. Klotho Inhibits Transforming Growth Factor-?1 (TGF-?1) Signaling and Suppresses Renal Fibrosis and Cancer Metastasis in Mice. — Journal of Biological Chemistry 286. № 10 (March 11, 2011): 8655–8665. https://doi.org/10.1074/jbc.M110.174037.

451

E. Forsberg et al. Effect of Systemically Increasing Human Full-Length Klotho on Glucose Metabolism in db/db Mice. — Diabetes Research and Clinical Practice 113 (March 2016): 208–210. https://doi.org/10.1016/j.diabres.2016.01.006.

452

R. Semba et al. Relationship of Low Plasma Klotho with Poor Grip Strength in Older Community-Dwelling Adults: The InCHIANTI Study. — European Journal of Applied Physiology 112. № 4 (April 2012): 1215–1220. https://www.ncbi.nlm.nih.gov/pubmed/21769735.

453

L. Chong. Repairing Injured Muscle. — Science, December 14, 2018. http://science.sciencemag.org/content/362/6420/1260.5.full.

454

M. Saghiv et al. The Effects of Aerobic and Anaerobic Exercise on Circulating Soluble-Klotho and IGF-1 in Young and Elderly Adults and in CAD Patients. — Journal of Circulating Biomarkers 6 (September 28, 2017): 6:1849454417733388. https://doi.org/10.1177/1849454417733388.

455

W. L. Lau et al. Vitamin D Receptor Agonists Increase Klotho and Osteopontin While Decreasing Aortic Calcification in Mice with Chronic Kidney Disease Fed a High Phosphate Diet. — Kidney International 82. № 12 (December 2012): 1261–1270. https://doi.org/10.1038/ki.2012.322.

456

H. E. Yoon et al. Angiotensin II Blockade Upregulates the Expression of Klotho, the Anti-Ageing Gene, in an Experimental Model of Chronic Cyclosporine Nephropathy. — Nephrology Dialysis Transplantation 26. № 3 (March 2011): 800–813. https://doi.org/10.1093/ndt/gfq537.

457

Sh.-Ch. Hsu et al. Testosterone Increases Renal Anti-Aging Klotho Gene Expression via the Androgen Receptor-Mediated Pathway, Biochemical Journal 464. № 2 (December 2014): 221–229. https://doi.org/10.1042/BJ20140739.

458

Gerit D. Mulder et al. Enhanced Healing of Ulcers in Patients with Diabetes by Topical Treatment with Glycyl?L?Histidyl?L?Lysine Copper. — Wound Repair and Regeneration 2. № 4 (October 1994): 259–269. https://doi.org/10.1046/j.1524-475X.1994.20406.x.

459

L. Pickart, J. Vasquez-Soltero, A. Margolina. The Human Tripeptide GHK-Cu in Prevention of Oxidative Stress and Degenerative Conditions of Aging: Implications for Cognitive Health. — Oxidative Medicine and Cellular Longevity 2012 (February 2012): 324832. https://doi.org/10.1155/2012/324832.

460

L. Pickart. The Human Tri-Peptide GHK and Tissue Remodeling, Journal of Biomaterials Science. — Polymer Edition 19. № 8 (2008): 969–988. https://doi.org/10.1163/156856208784909435.

461

M. Lupo, A. Cole. Cosmeceutical Peptides. — Dermatologic Therapy 20. № 5 (November 28, 2007): 343–349. https://doi.org/10.1111/j.1529–8019.2007.00148.x.

462

L. Pickart, J. Vasquz-Soltero, A. Margolina. GHK Peptide as a Natural Modulator of Multiple Cellular Pathways in Skin Regeneration. — BioMed Research International 2015 (April 2015): 648108. http://dx.doi.org/10.1155/2015/648108.

463

N. Verzijl et al. Effect of Collagen Turnover on the Accumulation of Advanced Glycation End Products. — Journal of Biological Chemistry, 275 (December 15, 2000): 39027–39031. http://doi.org/10.1074/jbc.M006700200.

464

R. Ganceviciene et al. Skin Anti-Aging Strategies. — Dermatoendocrinology 4. № 3 (2012): 308–319. http://doi.org/10.4161/derm.22804.

465

K. Jariashvili et al. UV Damage of Collagen: Insights from Model Collagen Peptides. — Biopolymers 97. № 3 (March 2012): 189–198. http://doi.org/10.1002/bip.21725; A. Knuutinen et al. Smoking Affects Collagen Synthesis and Extracellular Matrix Turnover in Human Skin. — British Journal of Dermatology 146. № 4 (April 2002): 588–594. https://doi.org/10.1046/j.1365–2133.2002.04694.x.

466

Ehr. Proksch et al. Oral Intake of Specific Bioactive Collagen Peptides Reduces Skin Wrinkles and Increases Dermal Matrix Synthesis. — Skin Pharmacology and Physiology 27. № 3 (2014): 113–119. https://doi.org/10.1159/000355523; Ehr. Proksch et al. Oral Supplementation of Specific Collagen Peptides Has Beneficial Effects on Human Skin Physiology: A Double-Blind, Placebo-Controlled Study. — Skin Pharmacology and Physiology 27. № 1 (2014): 47–55. https://doi.org/10.1159/000351376.

467

Kr. Clark et al. 24-Week Study on the Use of Collagen Hydrolysate as a Dietary Supplement in Athletes with Activity-Related Joint Pain. — Current Medical Research and Opinion 24. № 5 (May 2008): 1485–1496. https://doi.org/10.1185/030079908X291967.

468

O. Bruyère et al. Effect of Collagen Hydrolysate in Articular Pain: A 6-Month Randomized, Double-Blind, Placebo Controlled Study. — Complementary Therapies in Medicine 20. № 3 (June 2012): 124–130. https://doi.org/10.1016/j.ctim.2011.12.007.

469

Da König et al. Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women — A Randomized Controlled Study. — Nutrients 10. № 1 (January 2018): E97. https://doi.org/10.3390/nu10010097.

470

M. Graham et al. Collagen Synthesis by Human Intestinal Smooth Muscle Cells in Culture. — Gastroenterology 92. № 2 (February 1987): 400–405. https://www.ncbi.nlm.nih.gov/pubmed/3792777.

471

K. Nagahama et al. Orally Administered L-Arginine and Glycine Are Highly Effective Against Acid Reflux Esophagitis in Rats. — Medical Science Monitor 18. № 1 (2012): BR9–15. https://doi.org/10.12659/MSM.882190.

472

J. English. Gastric Balance: Heartburn Not Always Caused by Excess Acid. — Nutrition Review, November 25, 2018. https://nutritionreview.org/2018/11/gastric-balance-heartburn-caused-excess-acid/.

473

M. Grossman, J. Kirsner, I. Gillespie. Basal and Histalog-Stimulated Gastric Secretion in Control Subjects and in Patients with Peptic Ulcer or Gastric Cancer. — Gastroenterology 45 (July 1963): 15–26. https://doi.org/10.1016/S0016-5085(19)34918-2.

474

St. Krasinski et al. Fundic Atrophic Gastritis in an Elderly Population. Effect on Hemoglobin and Several Serum Nutritional Indicators, Skin Regeneration. — BioMed Research International 2015 (April 2015): 648108. http://dx.doi.org/10.1155/2015/648108. Journal of the American Geriatric Society 34. № 11 (November 1986): 800–806. https://doi.org/10.1111/j.1532–5415.1986.tb03985.x.

475

W. Yamadera et al. Glycine Ingestion Improves Subjective Sleep Quality in Human Volunteers, Correlating with Polysomnographic Changes, Sleep and Biological Rhythms 5. № 2 (April 2007): 126–131. https://doi.org/10.1111/j.1479–8425.2007.00262.x.

476

Edw. Harris, P. McCroskery. The Influence of Temperature and Fibril Stability on Degradation of Cartilage Collagen by Rheumatoid Synovial Collagenase. — New England Journal of Medicine 290 (January 1974): 1–6. https://doi.org/10.1056/NEJM197401032900101.

477

A. Lubkowska, B. Dołęgowska, Zb. Szyguła. Whole-Body Cryostimulation — Potential Beneficial Treatment for Improving Antioxidant Capacity in Healthy Men — Significance of the Number of Sessions. — PLoS One 7. № 10 (October 15, 2012): e46352. https://doi.org/10.1371/journal.pone.0046352.

478

Гормезис (гермезис) — стимулирующее действие умеренных доз стрессоров; стимуляция какой-либо системы организма внешними воздействиями, имеющими силу, недостаточную для проявления вредных факторов. Прим. ред.

479

I. Majid. Microneedling Therapy in Atrophic Facial Scars: An Objective Assessment. — Journal of Cutaneous and Aesthetic Surgery 2. № 1 (2009): 26–30. https://doi.org/10.4103/0974–2077.53096.

480

S. Chawla. Split Face Comparative Study of Microneedling with PRP Versus Microneedling with Vitamin C in Treating Atrophic Post Acne Scars. — Journal of Cutaneous and Aesthetic Surgery 7. № 4 (2014): 209–212. https://doi.org/10.4103/0974–2077.150742.

481

S.-H. Hong et al. Alternative Biotransformation of Retinal to Retinoic Acid or Retinol by an Aldehyde Dehydrogenase from Bacillus cereus. — Applied and Environmental Microbiology 82. № 13 (June 13, 2016). https://doi.org/10.1128/AEM.00848-16.

482

R. Kong et al. A Comparative Study of the Effects of Retinol and Retinoic Acid on Histological, Molecular, and Clinical Properties of Human Skin. — Journal of Cosmetic Dermatology 15. № 1 (March 2016): 49–57. https://doi.org/10.1111/jocd.12193.

483

P. Mastroiacovo et al. High Vitamin A Intake in Early Pregnancy and Major Malformations: A Multicenter Prospective Controlled Study. — Teratology 59. № 1 (January 1999): 7–11. https://doi.org/10.1002/(SICI)1096–9926(199901)59:1<7::AID-TERA4>3.0.CO;2–6.

484

R. Chaudhuri, K. Bojanowski. Bakuchiol: A Retinol-Like Functional Compound Revealed by Gene Expression Profiling and Clinically Proven to Have Anti-Aging Effects. — International Journal of Cosmetic Science 36. № 3 (June 2014): 221–230. https://doi.org/10.1111/ics.12117.

485

Zh.-M. Xiong et al. Anti-Aging Potentials of Methylene Blue for Human Skin Longevity. — Scientific Reports 7 (2017): 2475. https://doi.org/10.1038/s41598-017-02419-3.

486

Смурфы — персонажи с голубым цветом кожи из мультсериала, сделанного по комиксам, созданным бельгийским художником Пьером Кюллифором.

487

J. Haycock et al. α-Melanocyte-Stimulating Hormone Inhibits NF-κB Activation in Human Melanocytes and Melanoma Cells. — Journal of Investigative Dermatology 113. № 4 (October 1999): 560–566. https://doi.org/10.1046/j.1523–1747.1999.00739.x.

488

A. Solis Herrera, P. Solis Arias. Einstein Cosmological Constant, the Cell, and the Intrinsic Property of Melanin to Split and Re-Form the Water Molecule. — MOJ Cell Science & Report 1. № 2 (August 27, 2014): 46–51. https://doi.org/10.15406/mojcsr.2014.01.00011.

489

Federation of American Societies for Experimental Biology. Why Hair Turns Gray Is No Longer a Gray Area: Our Hair Bleaches Itself as We Grow Older. — ScienceDaily, February 24, 2009. www.sciencedaily.com/releases/2009/02/090223131123.htm.

490

E. Lubos, J. Loscalzo, D. Handy. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. — Antioxidants & Redox Signaling 15. № 7 (October 2011): 1957–1997. https://doi.org/10.1089/ars.2010.3586.

491

A. Pal et al. Ashwagandha Root Extract Inhibits Acetylcholine Esterase, Protein Modification and Ameliorates H2O2-Induced Oxidative Stress in Rat Lymphocytes. — Pharmacognosy Journal 9. № 3 (May — June 2017): 302–309. https://doi.org/10.5530/pj.2017.3.52/.

492

L.-Ch. Mishra, B. Singh, S. Dagenais. Scientific Basis for the Therapeutic Use of Withania somnifera (Ashwagandha): A Review. — Alternative Medicine Review 5. № 4 (2000): 334–346. http://altmedrev.com/archive/publications/5/4/334.pdf.

493

M. Harris et al. A Direct Link Between MITF, Innate Immunity, and Hair Graying. — PLoS Biology 16. № 5 (May 3, 2018): e2003648. https://doi.org/10.1371/journal.pbio.2003648.

494

Th. Rhodes et al. Prevalence of Male Pattern Hair Loss in 18–49 Year Old Men. — Dermatologic Surgery 24. № 12 (December 1998): 13330–13332. https://doi.org/10.1111/j.1524–4725.1998.tb00009.x.

495

P. M. Ramos, H. A. Miot. Female Pattern Hair Loss: A Clinical and Pathophysiological Review. — Brazilian Annals of Dermatology (Anais Brasileiros de Dermatologia) 90. № 4 (July — August 2015): 529–543. https://doi.org/10.1590/abd1806-4841.20153370.

496

P. Dockrill. «Unprecedented» DNA Discovery Reverses Wrinkles and Hair Loss in Mice. — Science Alert, July 28, 2018. https://www.sciencealert.com/unprecedented-dna-discovery-actually-reverses-wrinkles-and-hair-loss-mitochondria-mutation-mtdna/amp.

497

M. Zimber et al. Hair Regrowth Following a Wnt- and Follistatin Containing Treatment: Safety and Efficacy in a First-in-Man Phase 1 Clinical Trial. — Journal of Drugs in Dermatology 20. № 11 (November 2011): 1308–1312. https://www.ncbi.nlm.nih.gov/m/pubmed/22052313/.

498

Zh.-М. Li, S.-W. Xu, P.-Q. Liu. Salvia miltiorrhiza Burge (Danshen): A Golden Herbal Medicine in Cardiovascular Therapeutics. — Acta Pharmacologica Sinica 39. № 5 (May 2018): 802–824. https://doi.org/10.1038/aps.2017.193.

499

M. Surks, L. Boucai. Age- and Race-Based Serum Thyrotropin Reference Limits. — Journal of Clinical Endocrinology & Metabolism 95. № 2 (February 1, 2010): 496–502. https://doi.org/10.1210/jc.2009–1845.

500

M. Surks, L. Boucai. Age- and Race-Based Serum.

501

S. Jobling et al. A Variety of Environmentally Persistent Chemicals, Including Some Phthalate Plasticizers, Are Weakly Estrogenic. — Environmental Health Perspectives 103. № 6 (June 1995): 582–587. https://doi.org/10.1289/ehp.95103582.

502

G. Sosne, P. Qiu, M. Kurpakus-Wheater. Thymosin Beta 4: A Novel Corneal Wound Healing and Anti-Inflammatory Agent. — Clinical Ophthalmology 1. № 3 (2007): 201–207. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701135/.

503

Ch. Wei et al. Thymosin Beta 4 Protects Mice from Monocrotaline-Induced Pulmonary Hypertension and Right Ventricular Hypertrophy. — PLoS One 9. № 11 (November 20, 2014): e110598. https://doi.org/10.1371/journal.pone.0110598.

504

Vl. Khavinson, V. Morozov. Peptides of Pineal Gland and Thymus Prolong Human Life. — Neuroendocrinology Letters 24. № 3 (June — August 2003): 233–240. https://www.ncbi.nlm.nih.gov/pubmed/14523363.

505

Ch.-H. Chang et al. The Promoting Effect of Pentadecapeptide BPC 157 on Tendon Healing Involves Tendon Outgrowth, Cell Survival, and Cell Migration. — Journal of Applied Physiology 110. № 3 (March 2011): 774–780. https://doi.org/10.1152/japplphysiol.00945.2010.

506

B. Sebecic et al. Osteogenic Effect of a Gastric Pentadecapeptide, BPC-157, on the Healing of Segmental Bone Defect in Rabbits: A Comparison with Bone Marrow and Autologous Cortical Bone Implantation. — Bone 24. № 3 (1999): 195–202. https://doi.org/10.1016/S8756-3282(98)00180-X.

507

Pr. Sikiric et al. Toxicity by NSAIDs. Counteraction by Stable Gastric Pentadecapeptide BPC 157. — Current Pharmaceutical Design 19. № 1 (2013): 76–83. https://www.ncbi.nlm.nih.gov/pubmed/22950504.

508

T. Vuksic et al. Stable Gastric Pentadecapeptide BPC 157 in Trials for Inflammatory Bowel Disease (PL-10, PLD-116, PL 14736, Pliva, Croatia) Heals Ileoileal Anastomosis in the Rat. — Surgery Today 37. № 9 (2007): 768–777. https://doi.org/10.1007/s10787-006-1531-7.

509

Метод отличается от традиционного восточного иглоукалывания тем, что строится исключительно на результатах западных клинических исследований в таких областях, как физиология и анатомия.

510

Сухая мышечная масса — часть безжировой массы тела; в процесс сушки входит комплекс физических упражнений и соблюдение режима питания, целью которых является увеличение объема мышечной ткани без появления жировых отложений. Прим. ред.

511

R. Narayanan et al. Selective Androgen Receptor Modulators in Preclinical and Clinical Development. — Nuclear Receptor Signaling 6 (2008): e010. https://doi.org/10.1621/nrs.06010.

512

V. Narkar et al. AMPK and PPARdelta Agonists Are Exercise Mimetics. — Cell 134. № 3 (August 2008): 405–415. https://doi.org/10.1016/j.cell.2008.06.051.

513

W. Fan et al. Road to Exercise Mimetics: Targeting Nuclear Receptors in Skeletal Muscle. — Journal of Molecular Endocrinology 51. № 3 (2013): T87–T100. https://doi.org/10.1530/JME-13-0258.

514

J. Mitchell, D. Bishop-Bailey. PPAR?/ а Potential Target in Pulmonary Hypertension Blighted by Cancer Risk. — Pulmonary Circulation 9. № 1 (June — March 2019): 2045894018812053. https://doi.org/10.1177/2045894018812053.

515

Est. Woldt et al. Rev-erb-? Modulates Skeletal Muscle Oxidative Capacity by Regulating Mitochondrial Biogenesis and Autophagy. — Nature Medicine 19. № 8 (August 2013): 1039–1048. https://doi.org/10.1038/nm.3213.

516

J. Smith et al. Low-Dose Naltrexone Therapy Improves Active Crohn’s Disease. — American Journal of Gastroenterology 102. № 4 (April 2007): 820–828. https://doi.org/10.1111/j.1572–0241.2007.01045.x.

517

J. Younger, L. Parkitny, D. McLain. The Use of Low-Dose Naltrexone (LDN) as a Novel Anti-Inflammatory Treatment for Chronic Pain. — Clinical Rheumatology 33. № 4 (2014): 451–459. https://doi.org/10.1007/s10067-014-2517-2.

518

J. Younger, S. Mackey. Fibromyalgia Symptoms Are Reduced by Low-Dose Naltrexone: A Pilot Study. — Pain Medicine 10. № 4 (May — June 2009): 663–672. https://doi.org/10.1111/j.1526–4637.2009.00613.x; J. Younger et al. Low-Dose Naltrexone for the Treatment of Fibromyalgia: Findings of a Small, Randomized, Double-Blind, Placebo-Controlled, Counterbalanced, Crossover Trial Assessing Daily Pain Levels. — Arthritis & Rheumatology 65. № 2 (February 2013): 529–38. https://doi.org/10.1002/art.37734.

519

R. Donahue, P. McLaughlin, I. Zagon. Low-Dose Naltrexone Suppresses Ovarian Cancer and Exhibits Enhanced Inhibition in Combination with Cisplatin. — Experimental Biology and Medicine (Maywood) 236. № 7 (July 2011): 883–895. https://doi.org/10.1258/ebm.2011.011096.

520

B. Berkson, D. Rubin, A. Berkson. Reversal of Signs and Symptoms of a B-cell Lymphoma in a Patient Using Only Low-Dose Naltrexone. — Integrative Cancer Therapies 6. № 3 (September 2007): 293–296. https://doi.org/10.1177/1534735407306358; I. Zagon, R. Donahue, P. McLaughlin. Opioid Growth Factor-Opioid Growth Factor Receptor Axis Is a Physiological Determinant of Cell Proliferation in Diverse Human Cancers. — American Journal of Physiology, Regulatory, Integrative, and Comparative Physiology 297. № 4 (October 2009): R1154–1161. https://doi.org/10.1152/ajpregu.00414.2009.

521

Геодезические купола — сферические строения, созданные американским архитектором Бакминстером Фуллером; состоят из соединяющихся друг с другом пяти- и шестиугольников. Прим. ред.

522

Fr. Cataldo. Interaction of C(60) Fullerene with Lipids. — Chemistry and Physics of Lipids 163. № 6 (June 2010): 524–529. https://doi.org/10.1016/j.chemphyslip.2010.03.004.

523

Y. Rud et al. Using C60 Fullerenes for Photodynamic Inactivation of Mosquito Iridescent Viruses. — Journal of Enzyme Inhibition and Medicinal Chemistry 27. № 4 (August 2012): 614–617. https://doi.org/10.3109/14756366.2011.601303.

524

Липидный бислой — основа клеточной мембраны, тонкая липидная пленка, состоящая из двух монослоев и полностью покрывающая клетку. Липиды являются жироподобными веществами, отвечающими за выполнение множества функций в организме человека. Прим. ред.

525

Y. Pineda Galvan et al. Fullerenes as Anti-Aging Antioxidants. — Current Aging Science 10. № 1 (2017): 56–67. https://doi.org/10.2174/1874609809666160921120008.

526

T. Baati et al. The Prolongation of the Lifespan of Rats by Repeated Oral Administration of [60]Fullerene. — Biomaterials 33. № 19 (2012): 4936–4946. https://doi.org/10.1016/j.biomaterials.2012.03.036.

527

Холидей Р. Хит продаж. Как создавать и продвигать творческие проекты. М.: Попурри, 2018.

Вернуться к просмотру книги Вернуться к просмотру книги

Автор книги - Дэйв Эспри

Дэйв Эспри - биография автора

Дэйв Эспри / Dave Asprey — инвестор Кремниевой долины, создатель блога Bulletproof Executive (1,5 миллиона посетителей в месяц) и подкаста с миллионами скачиваний, потративший 15 лет и 300 тысяч долларов на изучение темы биохакинга и развития возможностей мозга. Благодаря исследованиям, о которых он рассказывает в книге, ему удалось серьезно сбросить вес без подсчета калорий, поднять IQ на несколько десятков пунктов, высыпаться за меньшее время и снизить свой биологический возраст.

Дэйв Эспри биография автора Биография автора - Дэйв Эспри