Ïðèìå÷àíèÿ êíèãè: Èììóíèòåò. Íàóêà î òîì, êàê áûòü çäîðîâûì - ÷èòàòü îíëàéí, áåñïëàòíî. Àâòîð: Äæåííà Ìà÷÷èîêè

÷èòàòü êíèãè îíëàéí áåñïëàòíî
 
 

Îíëàéí êíèãà - Èììóíèòåò. Íàóêà î òîì, êàê áûòü çäîðîâûì

Áàçîâàÿ êíèãà î òîì, êàê óñòðîåíà èììóííàÿ ñèñòåìà è ÷òî íóæíî äåëàòü, ÷òîáû åå óêðåïèòü (è ÷åãî äåëàòü íå íóæíî). Îò ó÷åíîãî èç Âåëèêîáðèòàíèè.

Ïåðåéòè ê ÷òåíèþ êíèãè ×èòàòü êíèãó « Èììóíèòåò. Íàóêà î òîì, êàê áûòü çäîðîâûì »

Ïðèìå÷àíèÿ

1

Ìàðè (Ìàðèý) Êîíäî — ÿïîíêà, ñïåöèàëèñò ïî íàâåäåíèþ ïîðÿäêà â äîìå, êîíñóëüòàíò è àâòîð ÷åòûðåõ êíèã ïî îðãàíèçàöèè äîìàøíåãî áûòà, êîòîðûå ïðîäàþòñÿ ìèëëèîííûìè òèðàæàìè è ïåðåâåäåíû íà ìíîãî ÿçûêîâ. Êîíäî ðàçðàáîòàëà ñîáñòâåííûå ïðèíöèïû â îðãàíèçàöèè ïðîñòðàíñòâà è ñôîðìèðîâàëà àâòîðñêèé ìåòîä íàâåäåíèÿ ïîðÿäêà — KonMari. Ïðèì. ðåä.

2

Ïðèìåðàìè ìîãóò ñëóæèòü ñîëÿíàÿ êèñëîòà è ñëèçü. Áåëêîâûå ìîëåêóëû â èõ ñîñòàâå îáåñïå÷èâàþò ìåñòíûé èììóíèòåò, áåñïîùàäíî ðàñïðàâëÿþòñÿ ñ îïàñíûìè ìèêðîîðãàíèçìàìè è ïîäàâëÿþò ðàñïðîñòðàíåíèå èíôåêöèè. Ïðèì. íàó÷. ðåä.

3

Áîëåçíü Áåõòåðåâà, èëè àíêèëîçèðóþùèé ñïîíäèëîàðòðèò (áîëåçíü Øòðþìïåëëÿ — Áåõòåðåâà — Ìàðè), — õðîíè÷åñêîå ñèñòåìíîå çàáîëåâàíèå ñóñòàâîâ, ïðè êîòîðîì ïîðàæàþòñÿ íåêîòîðûå îáëàñòè ïîçâîíî÷íèêà, ñòàíîâÿñü íåïîäâèæíûìè; ïîçâîíêè, ìåæïîçâîíêîâûå äèñêè è ñóñòàâû ïîñòåïåííî ñðàñòàþòñÿ. Ïðè ýòîì çàæèìàþòñÿ íåðâíûå îêîí÷àíèÿ, ïðè÷èíÿÿ ñèëüíåéøóþ áîëü. Ïðèì. ðåä.

4

Äà, ìèêðîáû ïðåäñòàâëÿþò äëÿ íàñ ïîòåíöèàëüíóþ óãðîçó, íî íå íóæíî çàáûâàòü, ÷òî îíè òàêæå ìîãóò îêàçûâàòü è áëàãîïðèÿòíîå âëèÿíèå íà çäîðîâüå. Äðóãèìè ñëîâàìè, ìèêðîáû è ãðÿçü ïðåäñòàâëÿþò ñîáîé íå ÷òî èíîå, êàê áåñïëàòíóþ íàòóðàëüíóþ âàêöèíàöèþ. È ïîýòîìó ñëåäóåò îòäàòü íàøèì ìàëåíüêèì äðóçüÿì äîëæíîå è ïåðåñòàòü ñòåðèëèçîâàòü è îòìûâàòü âñå âîêðóã. Ïðèì. íàó÷. ðåä.

5

Blalock, J. E. (1984) ‘The immune system as a sensory organ’, Journal of Immunology, 132(3), pp. 1067–70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/6363533 (Accessed: 30 November 2019).

6

Gruber-Bzura, B. M. (2018) ‘Vitamin D and influenza — Prevention or therapy?’, International Journal of Molecular Sciences. MDPI AG. 10.3390/ijms19082419.

7

Mackowiak, P. A. et al. (1981) ‘Effects of physiologic variations in temperature on the rate of antibiotic-induced bacterial killing’, American Journal of Clinical Pathology, 76(1), pp. 57–62. 10.1093/ajcp/76.1.57.

8

Young, P. et al. (2015) ‘Acetaminophen for fever in critically ill patients with suspected infection’, New England Journal of Medicine. Massachusetts Medical Society, 373(23), pp. 2215–2224. 10.1056/NEJMoa1508375.

9

Irwin, R. S. (2006) ‘Introduction to the diagnosis and management of cough: ACCP evidence-based clinical practice guidelines’, Chest, pp. 25S-27S. 10.1378/chest.129.1_suppl.25S.

10

Pradeu, T. and Cooper, E. L. (2012) ‘The danger theory: 20 years later’, Frontiers in Immunology, 3(SEP). 10.3389/fimmu.2012.00287.

11

Matzinger, P. (1994) ‘Tolerance, Danger, and the Extended Family’, Annual Review of Immunology. Annual Reviews, 12(1), pp. 991–1045. 10.1146/annurev.iy.12.040194.005015.

12

Zindel, J. and Kubes, P. (2020) ‘DAMPs, PAMPs, and LAMPs in Immunity and Sterile Inflammation’, Annual Review of Pathology: Mechanisms of Disease, 15(1), p. 2129251537. 10.1146/annurev-pathmechdis-012419-032847.

13

Chen, G. Y. and Nuñez, G. (2010) ‘Sterile inflammation: Sensing and reacting to damage’, Nature Reviews Immunology, pp. 826–837. 10.1038/nri2873.

14

Êîëîñòîìèÿ — õèðóðãè÷åñêàÿ ïðîöåäóðà, ïðè êîòîðîé â áðþøíîé ñòåíêå äåëàþò îòâåðñòèå äëÿ óäàëåíèÿ êàëîâûõ ìàññ ïóòåì âûâåäåíèÿ íàðóæó îäíîãî êîíöà òîëñòîé êèøêè. Ïðèì. ðåä.

15

Brown, K. F. et al. (2018) ‘The fraction of cancer attributable to modifiable risk factors in England, Wales, Scotland, Northern Ireland, and the United Kingdom in 2015’, British Journal of Cancer. Nature Publishing Group, 118(8), pp. 1130–1141. 10.1038/s41416-018-0029-6.

16

Hunter, P. (2012) ‘The inflammation theory of disease: the growing realization that chronic inflammation is crucial in many diseases opens new avenues for treatment’, EMBO Reports, 13(11), pp. 968–970. 10.1038/embor.2012.142.

17

McDade, T. W. (2012) ‘Early environments and the ecology of inflammation’, Proceedings of the National Academy of Sciences of the United States of America, pp. 17281–17288. 10.1073/pnas.1202244109.

18

Lorenzatti, A. and Servato, M. L. (2018) ‘Role of anti-inflammatory interventions in coronary artery disease: Understanding the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS)’, European Cardiology Review. Radcliffe Cardiology, 13(1), pp. 38–41. 10.15420/ecr.2018.11.1.

19

Bally, M. et al. (2017) ‘Risk of acute myocardial infarction with NSAIDs in real world use: Bayesian meta-analysis of individual patient data’, BMJ (Online). BMJ Publishing Group, 357. 10.1136/bmj.j1909.

20

Doux, J. D. et al. (2005) ‘Can chronic use of anti-inflammatory agents paradoxically promote chronic inflammation through compensatory host response?’, Medical Hypotheses, 65(2), pp. 389–391. 10.1016/j.mehy.2004.12.021.

21

Anderson, K. and Hamm, R. L. (2012) ‘Factors that impair wound healing’, Journal of the American College of Clinical Wound Specialists. Elsevier Inc., pp. 84–91. 10.1016/j.jccw.2014.03.001.

22

Hauser, R. (2010) ‘The Acceleration of Articular Cartilage Degeneration in Osteoarthritis by Nonsteroidal Anti-inflammatory Drugs’, Journal of Prolotherapy, 2(1), pp. 305–322.

23

Boehm, T. and Zufall, F. (2006) ‘MHC peptides and the sensory evaluation of genotype’, Trends in Neurosciences, pp. 100–107. 10.1016/j.tins.2005.11.006.

24

Wedekind, C. et al. (1995) ‘MHC-dependent mate preferences in humans’, Proceedings of the Royal Society B: Biological Sciences. Royal Society, 260(1359), pp. 245–249. 10.1098/rspb.1995.0087.

25

Day, S. et al. (2016) ‘Integrating and evaluating sex and gender in health research’, Health Research Policy and Systems. BioMed Central Ltd., 14(1). 10.1186/s12961-016-0147-7.

26

Liu, K. A. and Dipietro Mager, N. A. (2016) ‘Women’s involvement in clinical trials: Historical perspective and future implications’, Pharmacy Practice. Grupo de Investigacion en Atencion Farmaceutica. 10.18549/PharmPract.2016.01.708.

27

Van Eijk, L. T. and Pickkers, P. (2018) ‘Man flu: Less inflammation but more consequences in men than women’, BMJ (Online). BMJ Publishing Group. 10.1136/bmj.k439.

28

Úbeda, F. and Jansen, V. A. A. (2016) ‘The evolution of sex-specific virulence in infectious diseases’, Nature Communications. Nature Publishing Group, 7. 10.1038/ncomms13849.

29

Arruvito, L. et al. (2007) ‘Expansion of CD4 + CD25 + and FOXP3 + Regulatory T Cells during the Follicular Phase of the Menstrual Cycle: Implications for Human Reproduction’, The Journal of Immunology. The American Association of Immunologists, 178(4), pp. 2572–2578. 10.4049/jimmunol.178.4.2572.

30

Ngo, S. T., Steyn, F. J. and McCombe, P. A. (2014) ‘Gender differences in autoimmune disease’, Frontiers in Neuroendocrinology. Academic Press Inc., pp. 347–369. 10.1016/j.yfrne.2014.04.004.

31

Hughes, G. C. (2012) ‘Progesterone and autoimmune disease’, Autoimmunity Reviews. 10.1016/j.autrev.2011.12.003.

32

Laffont, S. et al. (2017) ‘Androgen signaling negatively controls group 2 innate lymphoid cells’, Journal of Experimental Medicine. Rockefeller University Press, 214(6), pp. 1581–1592. 10.1084/jem.20161807.

33

Lorenz, T. and van Anders, S. (2014) ‘Interactions of sexual activity, gender, and depression with immunity’, Journal of Sexual Medicine. Blackwell Publishing Ltd, 11(4), pp. 966–979. 10.1111/jsm.12111.

34

Lorenz, T. K., Heiman, J. R. and Demas, G. E. (2017) ‘Testosterone and immune-reproductive tradeoffs in healthy women’, Hormones and Behavior. Academic Press Inc., 88, pp. 122–130. 10.1016/j.yhbeh.2016.11.009.

35

Lorenz, T. K., Demas, G. E. and Heiman, J. R. (2017) ‘Partnered sexual activity moderates menstrual cycle — related changes in inflammation markers in healthy women: an exploratory observational study’, Fertility and Sterility. Elsevier Inc., 107(3), pp. 763–773.e3. 10.1016/j.fertnstert.2016.11.010.

36

Ghosh, M., Rodriguez-Garcia, M. and Wira, C. R. (2014) ‘The immune system in menopause: Pros and cons of hormone therapy’, Journal of Steroid Biochemistry and Molecular Biology. Elsevier Ltd, pp. 171–175. 10.1016/j.jsbmb.2013.09.003.

37

Ïî ðåçóëüòàòàì ðÿäà èññëåäîâàíèé íåâûíàøèâàíèå áåðåìåííîñòè ÷àñòî àññîöèèðîâàíî ñ óãíåòåíèåì äèôôåðåíöèðîâêè Ò-ðåãóëÿòîðíûõ êëåòîê. Ïðèì. íàó÷. ðåä.

38

Rowe, J. H. et al. (2012) ‘Pregnancy imprints regulatory memory that sustains anergy to fetal antigen’, Nature, 490(7418), pp. 102–106. 10.1038/nature11462.

39

Carr, E. J. et al. (2016) ‘The cellular composition of the human immune system is shaped by age and cohabitation’, Nature Immunology. Nature Publishing Group, 17(4), pp. 461–468. 10.1038/ni.3371.

40

Swaminathan, S. et al. (2015) ‘Mechanisms of clonal evolution in childhood acute lymphoblastic leukemia’, Nature Immunology. Nature Publishing Group, 16(7), pp. 766–774. 10.1038/ni.3160.

41

Ciabattini, A. et al. (2019) ‘Role of the microbiota in the modulation of vaccine immune responses’, Frontiers in Microbiology. Frontiers Media S.A. 10.3389/fmicb.2019.01305. Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics’, World Allergy Organization Journal. BioMed Central Ltd. doi: 10.1186/s40413-016-0111-6.

42

Åñòü òåðìèí «àòîïè÷åñêèé ìàðø», êîòîðûé ïîäðàçóìåâàåò ýòàïíîñòü ðàçâèòèÿ àëëåðãè÷åñêèõ çàáîëåâàíèé. Ïðè íàëè÷èè àòîïè÷åñêîãî äåðìàòèòà ñ âîçðàñòîì ïðîèñõîäèò ïîñëåäîâàòåëüíîå ïðèñîåäèíåíèå àëëåðãè÷åñêîãî ðèíèòà è áðîíõèàëüíîé àñòìû. Ïðèì. íàó÷. ðåä.

43

Óÿçâèìàÿ êîæà ðåàãèðóåò âîñïàëåíèåì íà âíåøíèå ðàçäðàæèòåëè: ñóõîé ãîðÿ÷èé âîçäóõ, òàáà÷íûé äûì, íî åùå ÷àùå — íà æåñòêóþ âîäó. Äîêàçàíî, ÷òî êîíòàêò ÷åðåç ïîðàæåííóþ êîæó áûñòðåå ïðèâîäèò ê ñåíñèáèëèçàöèè, ÷åì óïîòðåáëåíèå ïðîäóêòîâ. Èìåííî ïîýòîìó òàêèå áûòîâûå àëëåðãåíû, êàê ïûëü èëè ïûëåâîé êëåù, ÷àùå ìîãóò áûòü îäíîé èç ïðè÷èí îáîñòðåíèÿ àòîïè÷åñêîãî äåðìàòèòà. Ñì., íàïðèìåð, çäåñü: https://www.ncbi.nlm.nih.gov/pubmed/27059727?fbclid=IwAR1mdbJWvqbbm1z2JhtO99nh8cBS6jUgPLYLqZYcySWFHQLBUX0D66aaDG8. Ïðèì. íàó÷. ðåä.

44

Di Mauro, G. et al. (2016) ‘Prevention of food and airway Di Mauro, G. et al. (2016) ‘Prevention of food and airway Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics’, World Allergy Organization Journal. BioMed Central Ltd. 10.1186/s40413-016-0111-6.

45

 ñâÿçè ñ ýòèì òàê âàæíî ðàçíîîáðàçíîå ïèòàíèå ìàòåðè âî âðåìÿ ãðóäíîãî âñêàðìëèâàíèÿ: òàêèì îáðàçîì èäåò «îáó÷åíèå» èììóííîé ñèñòåìû ìàëûøà. Ïðèì. íàó÷. ðåä.

46

Äàííîå ïðàâèëî ñïðàâåäëèâî è â îòíîøåíèè äåòåé ñòàðøåãî âîçðàñòà. Î÷åíü âàæíî îáåñïå÷èòü àäåêâàòíûé è ðàçíîîáðàçíûé ïðèêîðì äëÿ çíàêîìñòâà èììóííîé ñèñòåìû ðåáåíêà ñ íîâûìè äëÿ íåãî âåùåñòâàìè è àëëåðãåíàìè. Òàêèì îáðàçîì è ôîðìèðóåòñÿ ïåðîðàëüíàÿ òîëåðàíòíîñòü. Ïðèì. íàó÷. ðåä.

47

Stein, K. (2014) ‘Severely restricted diets in the absence of medical necessity: The unintended consequences’, Journal of the Academy of Nutrition and Dietetics. Elsevier, 114(7), pp. 986–987. 10.1016/j.jand.2014.03.008.

48

Chan, E. S. et al. (2018) ‘Early introduction of foods to prevent food allergy’, Allergy, Asthma & Clinical Immunology, 14(S2), p. 57. 10.1186/s13223-018-0286-1.

49

Shaker, M. et al. (2018) ‘“To screen or not to screen”: Comparing the health and economic benefits of early peanut introduction strategies in five countries’, Allergy: European Journal of Allergy and Clinical Immunology. Blackwell Publishing Ltd, 73(8), pp. 1707–1714. 10.1111/all.13446.

50

Eder, W., Ege, M. J. and Von Mutius, E. (2006) ‘The asthma epidemic’, New England Journal of Medicine, pp. 2226–2235. 10.1056/NEJMra054308.

51

Baïz, N. et al. (2019) ‘Maternal diet before and during pregnancy and risk of asthma and allergic rhinitis in children’, Allergy, Asthma & Clinical Immunology, 15(1), p. 40. 10.1186/s13223-019-0353-2.

52

Lang, J. E. et al. (2018) ‘Being overweight or obese and the development of asthma’, Pediatrics. American Academy of Pediatrics, 142(6). 10.1542/peds.2018–2119.

53

Ïðàâèëüíåå, ïîæàëóé, ñïðàâèòüñÿ ñî ñòðàõàìè è íå äîïóñòèòü óõóäøåíèÿ ñèòóàöèè. Âåäü â íàøèõ ñèëàõ óâåñòè ðåáåíêà ñ îïàñíîé òðîïû àòîïè÷åñêîãî ìàðøà. Âðà÷è è ðîäèòåëè äîëæíû îáúåäèíèòüñÿ, ÷òîáû ïîìî÷ü äåòÿì ñ àëëåðãèåé. Ïðèì. íàó÷. ðåä.

54

Jones, E. J. et al. (2018) ‘Chronic family stress and adolescent health: The moderating role of emotion regulation’, Psychosomatic Medicine. Lippincott Williams and Wilkins, 80(8), pp. 764–773. 10.1097/PSY.0000000000000624.

55

Baranska, A. et al. (2018) ‘Unveiling skin macrophage dynamics explains both tattoo persistence and strenuous removal’, Journal of Experimental Medicine. Rockefeller University Press, 215(4), pp. 1115–1133. 10.1084/jem.20171608.

56

De Heredia, F., Gómez-Martínez, S., & Marcos, A. (2012). Obesity, inflammation and the immune system. Proceedings of the Nutrition Society, 71(2), pp. 332–338. doi: 10.1017/S0029665112000092.

57

Nishimura, S. et al. (2009) ‘CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity’, Nature Medicine, 15(8), pp. 914–920. 10.1038/nm.1964.

58

Han, S. J. et al. (2017) ‘White Adipose Tissue Is a Reservoir for Memory T Cells and Promotes Protective Memory Responses to Infection’, Immunity. Cell Press, 47(6), pp. 1154–1168.e6. 10.1016/j.immuni.2017.11.009.

59

À èìåííî ïîñðåäñòâîì ðåãóëÿòîðíûõ áåëêîâ, êîòîðûå ìîãóò àêòèâèðîâàòü ïîÿâëåíèå íîâûõ áóðûõ êëåòîê, à òàêæå ó÷àñòâóþò â ðåãóëÿöèè ïðîòèâîîïóõîëåâîãî èììóíèòåòà. Ïðèì. íàó÷. ðåä.

60

Lynch, L. et al. (2016) ‘iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy’, Cell Metabolism. Cell Press, 24(3), pp. 510–519. 10.1016/j.cmet.2016.08.003.

61

Óèëüÿì Ôðàíêëåíä, áðèòàíñêèé àëëåðãîëîã è èììóíîëîã, èçâåñòíûé êàê «äåäóøêà àëëåðãîëîãèè», óìåð 2 àïðåëÿ 2020 ãîäà â âîçðàñòå 108 ëåò. Ïðèì. ðåä.

62

Ãàëåí ñ÷èòàë, ÷òî ñòàðåíèå îïðåäåëÿåòñÿ ïîòåðåé «ïðèðîäíîãî æàðà», òî åñòü óìåíüøàåòñÿ âëàæíîñòü òåëà. Îí ñîïîñòàâëÿë íàáëþäåíèÿ íàä ñíèæåíèåì òåìïåðàòóðû è êëèíè÷åñêèå äàííûå ïî ïîòåðå âîäû ñòàðåþùèì îðãàíèçìîì. Ïî åãî ìíåíèþ, ó ñòàðûõ ëþäåé óìåíüøàåòñÿ êîëè÷åñòâî êðîâè, â ðåçóëüòàòå ÷åãî óõîäèò îñíîâíîå òîïëèâî, ïîääåðæèâàþùåå îãîíü æèçíè (ñõîëàñòè÷åñêîå ñðàâíåíèå ñ ìàñëÿíîé ëàìïîé, êîòîðàÿ ñàìà ñåáÿ ñæèãàåò). Ýòà ìûñëü ãîñïîäñòâîâàëà â ìåäèöèíå äî XVIII âåêà. Ïðèì. ðåä.

63

World Report on Ageing and Health (2015). Available at: www.who.int (Accessed: 1 December 2019).

64

Belsky, D. W. et al. (2015) ‘Quantification of biological aging in young adults’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 112(30), pp. E4104–E4110. 10.1073/pnas.1506264112.

65

Palmer, S. et al. (2018) ‘Thymic involution and rising disease incidence with age’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 115(8), pp. 1883–1888. 10.1073/pnas.1714478115.

66

Jurk, D. et al. (2014) ‘Chronic inflammation induces telomere dysfunction and accelerates ageing in mice’, Nature Communications. Nature Publishing Group, 2. 10.1038/ncomms5172.

67

Baker, D. J. et al. (2016) ‘Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan’, Nature. Nature Publishing Group, 530(7589), pp. 184–189. 10.1038/nature16932.

68

De la Fuente, M. (2002) ‘Effects of antioxidants on immune system ageing’, European Journal of Clinical Nutrition, 56, pp. S5–S8. 10.1038/sj.ejcn.1601476.

69

Ïðîèñõîäèò ýòî, êîíå÷íî æå, èç-çà ìàíèàêàëüíîãî ñòðåìëåíèÿ ïîäâåðãàòü ñòåðèëèçàöèè ñåáÿ, ïðîäóêòû ïèòàíèÿ è êàæäûé ìåòð â îêðóãå. Ïðèì. íàó÷. ðåä.

70

Canny, G. O. and McCormick, B. A. (2008) ‘Bacteria in the intestine, helpful residents or enemies from within?’, Infection and Immunity, pp. 3360–3373. 10.1128/IAI.00187-08.

71

Qin, J. et al. (2010) ‘A human gut microbial gene catalogue established by metagenomic sequencing’, Nature, 464(7285), pp. 59–65. 10.1038/nature08821.

72

Maslowski, K. M. and MacKay, C. R. (2011) ‘Diet, gut microbiota and immune responses’, Nature Immunology, pp. 5–9. 10.1038/ni0111-5.

73

Walker, R. W. et al. (2017) ‘The prenatal gut microbiome: are we colonized with bacteria in utero?’, Pediatric Obesity, 12, pp. 3–17. 10.1111/ijpo.12217.

74

Lathrop, S. K. et al. (2011) ‘Peripheral education of the immune system by colonic commensal microbiota’, Nature, 478(7368), pp. 250–254. 10.1038/nature10434.

75

Martín-Orozco, E., Norte-Muñoz, M. and Martínez-García, J. (2017) ‘Regulatory T cells in allergy and asthma’, Frontiers in Pediatrics. Frontiers Media S.A. 10.3389/fped.2017.00117.

76

Abdel-Gadir, A. et al. (2019) ‘Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy’, Nature Medicine. Nature Publishing Group, 25(7), pp. 1164–1174. 10.1038/s41591-019-0461-z.

77

Dominguez-Bello, M. G. et al. (2010) ‘Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns’, Proceedings of the National Academy of Sciences of the United States of America, 107(26), pp. 11971–11975. 10.1073/pnas.1002601107.

78

Salminen, S. et al. (2004) ‘Influence of mode of delivery on gut microbiota composition in seven year old children’, Gut. BMJ Publishing Group, pp. 1388–1389. 10.1136/gut.2004.041640.

79

Sevelsted, A. et al. (2015) ‘Cesarean section and chronic immune disorders’, Pediatrics. American Academy of Pediatrics, 135(1), pp. e92–e98. 10.1542/peds.2014–0596.

80

Pannaraj, P. S. et al. (2017) ‘Association between breast milk bacterial communities and establishment and development of the infant gut microbiome’, JAMA Pediatrics. American Medical Association, 171(7), pp. 647–654. 10.1001/jamapediatrics.2017.0378.

81

Bode, L. (2012) ‘Human milk oligosaccharides: Every baby needs a sugar mama’, Glycobiology, pp. 1147–1162. 10.1093/glycob/cws074.

82

Reynolds, A. et al. (2019) ‘Carbohydrate quality and human health: a series of systematic reviews and meta-analyses’, The Lancet. Lancet Publishing Group, 393(10170), pp. 434–445. 10.1016/S0140-6736(18)31809-9.

83

Kunzmann, A. T. et al. (2015) ‘Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial’, American Journal of Clinical Nutrition. American Society for Nutrition, 102(4), pp. 881–890. 10.3945/ajcn.115.113282.

84

Dai, Z. et al. (2017) ‘Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts’, Annals of the Rheumatic Diseases. BMJ Publishing Group, 76(8), pp. 1411–1419. 10.1136/annrheumdis-2016-210810.

85

McDonald, D. et al. (2018) ‘American Gut: an Open Platform for Citizen Science Microbiome Research’, mSystems. American Society for Microbiology, 3(3). 10.1128/msystems.00031-18.

86

Sonnenburg, E. D. et al. (2016) ‘Diet-induced extinctions in the gut microbiota compound over generations’, Nature. Nature Publishing Group, 529(7585), pp. 212–215. 10.1038/nature16504.

87

Helander, H. F. and Fändriks, L. (2014) ‘Surface area of the digestive tract-revisited’, Scandinavian Journal of Gastroenterology. Informa Healthcare, 49(6), pp. 681–689. 10.3109/00365521.2014.898326.

88

Roomruangwong, C. et al. (2019) ‘The menstrual cycle may not be limited to the endometrium but also may impact gut permeability’, Acta Neuropsychiatrica. Cambridge University Press. 10.1017/neu.2019.30.

89

Lozupone, C. A. et al. (2012) ‘Diversity, stability and resilience of the human gut microbiota’, Nature, pp. 220–230. 10.1038/nature11550.

90

Bischoff, S. C. (2011) ‘“Gut health”: A new objective in medicine?’, BMC Medicine, 9. 10.1186/1741-7015-9-24.

91

Dethlefsen, L. et al. (2008) ‘The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing’, PLoS Biology. Edited by J. A. Eisen, 6(11), p. e280. 10.1371/journal.pbio.0060280.

92

Cox, L. M. et al. (2014) ‘Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences’, Cell, 158(4), pp. 705–721. 10.1016/j.cell.2014.05.052.

93

Cox, L. M. and Blaser, M. J. (2015) ‘Antibiotics in early life and obesity’, Nature Reviews Endocrinology. Nature Publishing Group, pp. 182–190. 10.1038/nrendo.2014.210.

94

Turnbaugh, P. J. et al. (2006) ‘An obesity-associated gut microbiome with increased capacity for energy harvest’, Nature, 444(7122), pp. 1027–1031. 10.1038/nature05414.

95

Ìåòôîðìèí — ðàñïðîñòðàíåííûé ïðåïàðàò, ïðèìåíÿåìûé ïðè ëå÷åíèè ñàõàðíîãî äèàáåòà âòîðîãî òèïà. Ïðèì. ðåä.

96

Escobar, J. S. et al. (2017) ‘Metformin Is Associated with Higher Relative Abundance of Mucin-Degrading Akkermansia muciniphila and Several Short-Chain Fatty Acid-Producing Microbiota in the Gut’, Diabetes Care, 40. 10.2337/dc16-1324.

97

Èíãèáèòîðû ïðîòîííîãî íàñîñà — ãðóïïà ïðåïàðàòîâ, ïðèìåíÿåìûõ ïðè ëå÷åíèè çàáîëåâàíèé æåëóäî÷íî-êèøå÷íîãî òðàêòà. Ïðèì. ðåä.

98

Jackson, M. A. et al. (2016) ‘Proton pump inhibitors alter the composition of the gut microbiota’, Gut. BMJ Publishing Group, 65(5), pp. 749–756. 10.1136/gutjnl-2015-310861.

99

Rogers, M. A. M. and Aronoff, D. M. (2016) ‘The influence of non-steroidal anti-inflammatory drugs on the gut microbiome’, Clinical Microbiology and Infection. Elsevier B.V., 22(2), pp. 178.e1–178.e9. 10.1016/j.cmi.2015.10.003.

100

Maier, L. et al. (2018) ‘Extensive impact of non-antibiotic drugs on human gut bacteria’, Nature. Nature Publishing Group, 555(7698), pp. 623–628. 10.1038/nature25979.

101

Tropini, C. et al. (2018) ‘Transient Osmotic Perturbation Causes Long-Term Alteration to the Gut Microbiota’, Cell. Cell Press, 173(7), pp. 1742–1754.e17. 10.1016/j.cell.2018.05.008.

102

Hesselmar, B., Hicke-Roberts, A. and Wennergren, G. (2015) ‘Allergy in children in hand versus machine dishwashing’, Pediatrics. American Academy of Pediatrics, 135(3), pp. e590– e597. 10.1542/peds.2014–2968.

103

Frenkel, E. S. and Ribbeck, K. (2015) ‘Salivary mucins protect Environmental Microbiology. American Society for Microbiology, 81(1), pp. 332–338. 10.1128/AEM.02573-14.

104

Lynch, S. J., Sears, M. R. and Hancox, R. J. (2016) ‘Thumb-sucking, nail-biting, and atopic sensitization, asthma, and hay fever’, Pediatrics. American Academy of Pediatrics, 138(2). 10.1542/peds.2016–0443.

105

Mills, J. G. et al. (2019) ‘Relating urban biodiversity to human health with the “Holobiont” concept’, Frontiers in Microbiology. Frontiers Media S.A. doi: 10.3389/fmicb.2019.00550

106

Brodie, E. L. et al. (2007) ‘Urban aerosols harbor diverse and dynamic bacterial populations’, Proceedings of the National Academy of Sciences of the United States of America, 104(1), pp. 299–304. 10.1073/pnas.0608255104.

107

Meadow, J. F. et al. (2014) ‘Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source’, Indoor Air, 24(1), pp. 41–48. 10.1111/ina.12047.

108

Kembel, S. W. et al. (2012) ‘‘Architectural design influences the diversity and structure of the built environment microbiome’, ISME Journal, 6(8), pp. 1469–1479. 10.1038/ismej.2011.211.

109

Olszak, T. et al. (2012) ‘Microbial exposure during early life has persistent effects on natural killer T cell function’, Science. American Association for the Advancement of Science, 336 (6080), pp. 489–493. 10.1126/science.1219328.

110

Riedler, J. et al. (2001) ‘Exposure to farming in early life and development of asthma and allergy: A cross-sectional survey’, Lancet. Lancet Publishing Group, 358(9288), pp. 1129–1133. 10.1016/S0140-6736(01)06252-3.

111

Stanford, J. L. et al. (2001) ‘Does immunotherapy with heat-killed Mycobacterium vaccae offer hope for the treatment of multi-drug-resistant pulmonary tuberculosis?’, Respiratory Medicine. W.B. Saunders Ltd, 95(6), pp. 444–447. 10.1053/rmed.2001.1065.

112

Skinner, M. A. et al. (2001) ‘The ability of heat-killed Mycobacterium vaccae to stimulate a cytotoxic T-cell response to an unrelated protein is associated with a 65 kilodalton heat-shock protein’, Immunology, 102(2), pp. 225–233. 10.1046/j.1365–2567.2001.01174.x.

113

O’Brien, M. E. R. et al. (2004) ‘SRL 172 (killed Mycobacterium vaccae) in addition to standard chemotherapy improves quality of life without affecting survival, in patients with advanced non-small-cell lung cancer: Phase III results’, Annals of Oncology, 15(6), pp. 906–914. 10.1093/annonc/mdh220.

114

Wiley, A. S. and Katz, S. H. (1998) ‘Geophagy in pregnancy: A test of a hypothesis’, Current Anthropology, 39(4), pp. 532–545. 10.1086/204769.

115

Krishnamani, R. and Mahaney, W. C. (2000) ‘Geophagy among primates: Adaptive significance and ecological consequences’, Animal Behaviour. Academic Press, pp. 899–915. 10.1006/anbe.1999.1376.

116

Êîìáó÷à — ÷àéíûé ãðèá (ÿïîíñêèé ãðèá, ìîðñêîé êâàñ, ÷àéíàÿ ìåäóçà), è ýòî íå îäèí îðãàíèçì, à ñèìáèîòè÷åñêàÿ êîëîíèÿ äðîææåé è áàêòåðèé. Áîëåå 2000 ëåò èñïîëüçóåòñÿ äëÿ ïðèãîòîâëåíèÿ íàïèòêà ñ íåîáû÷íûìè ñâîéñòâàìè, êîòîðûé â Êèòàå íàçûâàþò ýëèêñèðîì çäîðîâüÿ è áåññìåðòèÿ. Ïðèì. ðåä.

117

Hickson, M. et al. (2007) ‘Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: Randomised double blind placebo controlled trial’, British Medical Journal, 335(7610), pp. 80–83. 10.1136/bmj.39231.599815.55.

118

Spaiser, S. J. et al. (2015) ‘Lactobacillus gasseri KS-13, Bifidobacterium bifidum G9-1, and Bifidobacterium longum MM-2 Ingestion Induces a Less Inflammatory Cytokine Profile and a Potentially Beneficial Shift in Gut Microbiota in Older Adults: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study’, Journal of the American College of Nutrition. Routledge, 34(6), pp. 459–469. 10.1080/07315724.2014.983249.

119

Kumar, M. et al. (2016) ‘Human gut microbiota and healthy aging: Recent developments and future prospective’, Nutrition and Healthy Aging. IOS Press, 4(1), pp. 3–16. 10.3233/nha-150002.

120

Ouwehand, A. C. et al. (2008) ‘Bifidobacterium microbiota and parameters of immune function in elderly subjects’, FEMS Immunology & Medical Microbiology, 53(1), pp. 18–25. 10.1111/j.1574-695X.2008.00392.x.

121

Hao, Q., Dong, B. R. and Wu, T. (2015) ‘Probiotics for preventing acute upper respiratory tract infections’, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. 10.1002/14651858.CD006895.pub3.

122

Wassermann, B., Müller, H. and Berg, G. (2019) ‘An Apple a Day: Which Bacteria Do We Eat With Organic and Conventional Apples?’, Frontiers in Microbiology, 10. 10.3389/fmicb.2019.01629.

123

Dimidi, E. et al. (2019) ‘Fermented Foods: Definitions and Characteristics, Impact on the Gut Microbiota and Effects on Gastrointestinal Health and Disease’, Nutrients, 11(8), p. 1806. 10.3390/nu11081806.

124

Óîëêåð Ì. Çà÷åì ìû ñïèì. Íîâàÿ íàóêà î ñíå è ñíîâèäåíèÿõ. Ì.: ÊîËèáðè, 2020. Ïðèì. ðåä.

125

Gallicchio, L. and Kalesan, B. (2009) ‘Sleep duration and mortality: a systematic review and meta-analysis’, Journal of Sleep Research, 18(2), pp. 148–158. 10.1111/j.1365–2869.2008.00732.x.

126

Besedovsky, L., Lange, T. and Haack, M. (2019) ‘The sleep-immune crosstalk in health and disease’, Physiological Reviews. American Physiological Society, 99(3), pp. 1325–1380. 10.1152/physrev.00010.2018.

127

Savard, J. et al. (no date) ‘Chronic insomnia and immune functioning’, Psychosomatic Medicine, 65(2), pp. 211–21. 10.1097/01.psy.0000033126.22740.f3.

128

Cohen, S. et al. (2009) ‘Sleep habits and susceptibility to the common cold’, Archives of Internal Medicine, 169(1), pp. 62–67. 10.1001/archinternmed.2008.505.

129

Westermann, J. et al. (2015) ‘System Consolidation During Sleep — A Common Principle Underlying Psychological and Immunological Memory Formation’, Trends in Neurosciences. Elsevier Ltd, pp. 585–597. 10.1016/j.tins.2015.07.007.

130

Irwin, M. R. et al. (2008) ‘Sleep Loss Activates Cellular Inflammatory Signaling’, Biological Psychiatry, 64(6), pp. 538–540. 10.1016/j.biopsych.2008.05.004.

131

Irwin, M. et al. (2003) ‘Nocturnal catecholamines and immune function in insomniacs, depressed patients, and control subjects’, Brain, Behavior, and Immunity. Academic Press Inc., 17(5), pp. 365–372. 10.1016/S0889-1591(03)00031-X.

132

Vgontzas, A. N. et al. (2004) ‘Adverse Effects of Modest Sleep Restriction on Sleepiness, Performance, and Inflammatory Cytokines’, The Journal of Clinical Endocrinology & Metabolism, 89(5), pp. 2119–2126. 10.1210/jc.2003-031562.

133

Lentz, M. J. et al. (1999) ‘Effects of selective slow wave sleep disruption on musculoskeletal pain and fatigue in middle aged women’, Journal of Rheumatology, 26(7), pp. 1586–1592.

134

Ben Simon, E. and Walker, M. P. (2018) ‘Sleep loss causes social withdrawal and loneliness’, Nature Communications. Nature Publishing Group, 9(1). 10.1038/s41467-018-05377-0.

135

Smith, R. P. et al. (2019) ‘Gut microbiome diversity is associated with sleep physiology in humans’, PLOS ONE. Edited by P. Aich, 14(10), p. e0222394. 10.1371/journal.pone.0222394.

136

Smith, R. P. et al. (2019) ‘Gut microbiome diversity is associated with sleep physiology in humans’, PLOS ONE. Edited by P. Aich, 14(10), p. e0222394. 10.1371/journal.pone.0222394.

137

Hoyle, N. P. et al. (2017) ‘Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing’, Science Translational Medicine. American Association for the Advancement of Science, 9(415). 10.1126/scitranslmed.aal2774.

138

Pietroiusti, A. et al. (2010) ‘Incidence of metabolic syndrome among night-shift healthcare workers’, Occupational and Environmental Medicine, 67(1), pp. 54–57. 10.1136/oem.2009.046797.

139

Stevens, R. G. et al. (2014) ‘Breast cancer and circadian disruption from electric lighting in the modern world’, CA: A Cancer Journal for Clinicians, 64(3), pp. 207–218. 10.3322/caac.21218.

140

Vacchio, M. S., Lee, J. Y. and Ashwell, J. D. (1999) ‘Thymus-derived glucocorticoids set the thresholds for thymocyte selection by inhibiting TCR-mediated thymocyte activation.’, Journal of Immunology, 163(3), pp. 1327–33. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10415031 (Accessed: 1 December 2019).

141

Cinzano, P., Falchi, F. and Elvidge, C. D. (2001) ‘The first World Atlas of the artificial night sky brightness’, Monthly Notices of the Royal Astronomical Society, 328(3), pp. 689–707. 10.1046/j.1365–8711.2001.04882.x.

142

Hale, L. and Guan, S. (2015) ‘Screen time and sleep among school-aged children and adolescents: A systematic literature review’, Sleep Medicine Reviews. W.B. Saunders Ltd, pp. 50–58. 10.1016/j.smrv.2014.07.007.

143

Scott, H., Biello, S. M. and Woods, H. C. (2019) ‘Social media use and adolescent sleep patterns: cross-sectional findings from the UK millennium cohort study’, BMJ Open. NLM (Medline), 9(9), p. e031161. 10.1136/bmjopen-2019-031161.

144

Crowley, S. J. et al. (2018) ‘An update on adolescent sleep: New evidence informing the perfect storm model’, Journal of Adolescence. Academic Press, pp. 55–65. 10.1016/j.adolescence.2018.06.001.

145

O’Hagan, J. B., Khazova, M. and Price, L. L. A. (2016) ‘Low-energy light bulbs, computers, tablets and the blue light hazard’, Eye (Basingstoke). Nature Publishing Group, 30(2), pp. 230–233. 10.1038/eye.2015.261.

146

CIE Technical Committee 6-15 and International Commission on Illumination (no date) A Computerized Approach to Transmission and Absorption Characteristics of the Human Eye.

147

Cissé, Y. M., Russart, K. L. G. and Nelson, R. J. (2017) ‘Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity’, Nature Publishing Group. 10.1038/srep45497.

148

Meijden, W. P. van der et al. (2019) ‘Restoring the sleep disruption by blue light emitting screen use in adolescents: a randomized controlled trial’, Endocrine Abstracts. Bioscientifica. 10.1530/endoabs.63.p652.

149

Kimberly, B. and James R., P. (2009) ‘Amber lenses to block blue light and improve sleep: A randomized trial’, Chronobiology International, 26(8), pp. 1602–1612. 10.3109/07420520903523719.

150

Van Der Lely, S. et al. (2015) ‘Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers’, Journal of Adolescent Health. Elsevier USA, 56(1), pp. 113–119. 10.1016/j.jadohealth.2014.08.002.

151

Rångtell, F. H. et al. (2016) ‘Two hours of evening reading on a self-luminous tablet vs. reading a physical book does not alter sleep after daytime bright light exposure’, Sleep Medicine. Elsevier B.V., 23, pp. 111–118. 10.1016/j.sleep.2016.06.016.

152

Gominak, S. C. and Stumpf, W. E. (2012) ‘The world epidemic of sleep disorders is linked to vitamin D deficiency’, Medical Hypotheses, 79(2), pp. 132–135. 10.1016/j.mehy.2012.03.031.

153

McCarty, D. E. et al. (2014) ‘The link between vitamin D metabolism and sleep medicine’, Sleep Medicine Reviews. W.B. Saunders Ltd, pp. 311–319. 10.1016/j.smrv.2013.07.001.

154

Becquet, D. et al. (1993) ‘Glutamate, GABA, glycine and taurine modulate serotonin synthesis and release in rostral and caudal rhombencephalic raphe cells in primary cultures’, Neurochemistry International, 23(3), pp. 269–283. 10.1016/0197-0186(93)90118-O.

155

Yamadera, W. et al. (2007) ‘Glycine ingestion improves subjective sleep quality in human volunteers, correlating with polysomnographic changes’, Sleep and Biological Rhythms, 5(2), pp. 126–131. 10.1111/j.1479–8425.2007.00262.x.

156

Inagawa, K. et al. (2006) ‘Subjective effects of glycine ingestion before bedtime on sleep quality’, Sleep and Biological Rhythms, 4(1), pp. 75–77. 10.1111/j.1479–8425.2006.00193.x.

157

Liguori, I. et al. (2018) ‘Oxidative stress, aging, and diseases’, Clinical Interventions in Aging. Dove Medical Press Ltd., pp. 757–772. 10.2147/CIA.S158513.

158

Forrest, K. Y. Z. and Stuhldreher, W. L. (2011) ‘Prevalence and correlates of vitamin D deficiency in US adults’, Nutrition Research, 31(1), pp. 48–54. 10.1016/j.nutres.2010.12.001.

159

Nair, R. and Maseeh, A. (2012) ‘Vitamin D: The sunshine vitamin’, Journal of Pharmacology and Pharmacotherapeutics, pp. 118–126. 10.4103/0976-500X.95506.

160

Garland, C. F. et al. (2014) ‘Meta-analysis of all-cause mortality according to serum 25-hydroxyvitamin D’, American Journal of Public Health. American Public Health Association Inc. 10.2105/AJPH.2014.302034.

161

Phan, T. X. et al. (2016) ‘Intrinsic photosensitivity enhances motility of T lymphocytes’, Scientific Reports. Nature Publishing Group, 6. 10.1038/srep39479.

162

Leavy, O. (2010) ‘Immune-boosting sunshine’, Nature Reviews Immunology, p. 220. 10.1038/nri2759.

163

Yu, C. et al. (2017) ‘Nitric oxide induces human CLA+CD25+Foxp3+ regulatory T cells with skin-homing potential’, Journal of Allergy and Clinical Immunology. Mosby Inc., 140(5), pp. 1441–1444.e6. 10.1016/j.jaci.2017.05.023.

164

Sloan, C., Moore, M. L. and Hartert, T. (2011) ‘Impact of Pollution, Climate, and Sociodemographic Factors on Spatiotemporal Dynamics of Seasonal Respiratory Viruses’, Clinical and Translational Science, 4(1), pp. 48–54. 10.1111/j.1752–8062.2010.00257.x.

165

Leekha, S., Diekema, D. J. and Perencevich, E. N. (2012) ‘Seasonality of staphylococcal infections’, Clinical Microbiology and Infection. Blackwell Publishing Ltd, pp. 927–933. 10.1111/j.1469–0691.2012.03955.x.

166

Dopico, X. C. et al. (2015) ‘Widespread seasonal gene expression reveals annual differences in human immunity and physiology’, Nature Communications. Nature Publishing Group, 6. 10.1038/ncomms8000.

167

Goldinger, A. et al. (2015) ‘Seasonal effects on gene expression’, PLoS ONE. Public Library of Science, 10(5). 10.1371/journal.pone.0126995.

168

Dantzer, R. (2009) ‘Cytokine, Sickness Behavior, and Depression’, Immunology and Allergy Clinics of North America, pp. 247–264. 10.1016/j.iac.2009.02.002.

169

Iwashyna, T. J. et al. (2010) ‘Long-term cognitive impairment and functional disability among survivors of severe sepsis’, JAMA — Journal of the American Medical Association. American Medical Association, 304(16), pp. 1787–1794. 10.1001/jama.2010.1553.

170

Harrison, N. A. et al. (2009) ‘Neural Origins of Human Sickness in Interoceptive Responses to Inflammation’, Biological Psychiatry, 66(5), pp. 415–422. 10.1016/j.biopsych.2009.03.007.

171

Freedland, K. E. et al. (1992) ‘Major depression in coronary artery disease patients with vs. without a prior history of depression’, Psychosomatic Medicine, 54(4), pp. 416–421. 10.1097/00006842-199207000-00004.

172

Panagiotakos, D. B. et al. (2004) ‘Inflammation, coagulation, and depressive symptomatology in cardiovascular disease-free people; the ATTICA study’, European Heart Journal, 25(6), pp. 492–499. 10.1016/j.ehj.2004.01.018.

173

Saavedra, K. et al. (2016) ‘Epigenetic modifications of major depressive disorder’, International Journal of Molecular Sciences. MDPI AG. 10.3390/ijms17081279.

174

Wray, N. R. et al. (2018) ‘Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression’, Nature Genetics. Nature Publishing Group, 50(5), pp. 668–681. 10.1038/s41588-018-0090-3.

175

Raison, C. L. and Miller, A. H. (2013) ‘The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D)’, Molecular Psychiatry. Nature Publishing Group, 18(1), pp. 15–37. 10.1038/mp.2012.2.

176

Penn, E. and Tracy, D. K. (2012) ‘The drugs don’t work? antidepressants and the current and future pharmacological management of depression’, Therapeutic Advances in Psychopharmacology, 2(5), pp. 179–188. 10.1177/204512531244546.

177

Kessler, R. C. and Bromet, E. J. (2013) ‘The Epidemiology of Depression Across Cultures’, Annual Review of Public Health. Annual Reviews, 34(1), pp. 119–138. 10.1146/annurev-publhealth-031912-114409.

178

Kohler, O. et al. (2016) ‘Inflammation in Depression and the Potential for Anti-Inflammatory Treatment’, Current Neuropharmacology. Bentham Science Publishers Ltd., 14(7), pp. 732–742. 10.2174/1570159x14666151208113700.

179

Kappelmann, N. et al. (2018) ‘Antidepressant activity of anti-cytokine treatment: A systematic review and meta-analysis of Molecular Psychiatry. Nature Publishing Group, 23(2), pp. 335–343. 10.1038/mp.2016.167.

180

Al-Harbi, K. S. (2012) ‘Treatment-resistant depression: Therapeutic trends, challenges, and future directions’, Patient Preference and Adherence, pp. 369–388. 10.2147/PPA.S29716.

181

O’Connell, P. J. et al. (2006) ‘A novel form of immune signaling revealed by transmission of the inflammatory mediator serotonin between dendritic cells and T cells’, Blood, 107(3), pp. 1010–1017. 10.1182/blood-2005-07-2903.

182

Halaris, A. et al. (2015) ‘Does escitalopram reduce neurotoxicity in major depression?’, Journal of Psychiatric Research. Elsevier Ltd, 66–67, pp. 118–126. 10.1016/j.jpsychires.2015.04.026.

183

Ñýð Óèëüÿì Îñëåð (1849–1919) — áëåñòÿùèé êàíàäñêèé âðà÷, ïðîôåññîð ÷åòûðåõ óíèâåðñèòåòîâ. Ñîâåðøèë ìíîãî íàó÷íûõ îòêðûòèé â îáëàñòè ìåäèöèíû, àâòîð áîëåå 700 ïå÷àòíûõ ðàáîò. Ôèëîñîô, ïðîñâåòèòåëü, ðåôîðìàòîð îáðàçîâàíèÿ è ýññåèñò. Ïðèì. ðåä.

184

Graham-Engeland, J. E. et al. (2018) ‘Negative and positive affect as predictors of inflammation: Timing matters’, Brain, Behavior, and Immunity. Academic Press Inc., 74, pp. 222–230. 10.1016/j.bbi.2018.09.011.

185

Barlow, M. A. et al. (2019) ‘Is Anger, but Not Sadness, Associated with Chronic Inflammation and Illness in Older Adulthood? The Discrete Emotion Theory of Affective Aging Psychology and Aging’, Association, 34(3), pp. 330–340. 10.1037/pag0000348.

186

Cole, S. W. et al. (2007) ‘Social regulation of gene expression in human leukocytes’, Genome Biology, 8(9), p. R189. 10.1186/gb-2007-8-9-r189.

187

Tomova, L. et al. (2017) ‘Increased neural responses to empathy for pain might explain how acute stress increases prosociality’, Social Cognitive and Affective Neuroscience, 12(3), pp. 401–408. 10.1093/scan/nsw146.

188

Ëèòè÷åñêèé öèêë, èëè ëèòè÷åñêàÿ èíôåêöèÿ, — òèï æèçíåííîãî öèêëà áàêòåðèîôàãîâ, ïðè êîòîðîì âñêîðå ïîñëå çàðàæåíèÿ áàêòåðèàëüíîé êëåòêè âèðóñ âîñïðîèçâîäèò ñåáÿ è â èòîãå óáèâàåò êëåòêó-õîçÿèíà. Ïðèì. ðåä.

189

Patterson, A. M. et al. (2014) ‘Perceived stress predicts allergy flares’, Annals of Allergy, Asthma and Immunology. American College of Allergy, Asthma and Immunology, 112(4), pp. 317–321. 10.1016/j.anai.2013.07.013.

190

Wainwright, N. W. J. et al. (2007) ‘Psychosocial factors and incident asthma hospital admissions in the EPIC-Norfolk cohort study’, Allergy, 62(5), pp. 554–560. 10.1111/j.1398–9995.2007.01316.x.

191

Calam, R. et al. (2005) ‘Behavior Problems Antecede the Development of Wheeze in Childhood’, American Journal of Respiratory and Critical Care Medicine, 171(4), pp. 323–327. 10.1164/rccm.200406-791OC.

192

Stevenson, J. and ETAC Study Group (no date) ‘Relationship between behavior and asthma in children with atopic dermatitis.’, Psychosomatic Medicine, 65(6), pp. 971–975. 10.1097/01.psy.0000097343.76844.90.

193

Dave, N. D. et al. (2011) ‘Stress and Allergic Diseases’, Immunology and Allergy Clinics of North America, pp. 55–68. 10.1016/j.iac.2010.09.009.

194

Martino, M. et al. (2012) ‘Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance’, Current Neuropharmacology. Bentham Science Publishers Ltd., 10(2), pp. 97–123. 10.2174/157015912800604542.

195

Koch-Henriksen, N. et al. (2018) ‘Incidence of MS has increased markedly over six decades in Denmark particularly with late onset and in women’, Neurology. Lippincott Williams and Wilkins, 90(22), pp. e1954–e1963. 10.1212/WNL.0000000000005612.

196

Banuelos, J. and Lu, N. Z. (2016) ‘A gradient of glucocorticoid sensitivity among helper T cell cytokines’, Cytokine and Growth Factor Reviews. Elsevier Ltd, pp. 27–35. 10.1016/j.cytogfr.2016.05.002.

197

Roberts, A. L. et al. (2017) ‘Association of Trauma and Posttraumatic Stress Disorder with Incident Systemic Lupus Erythematosus in a Longitudinal Cohort of Women’, Arthritis & Rheumatology, 69(11), pp. 2162–2169. 10.1002/art.40222.

198

Oral, R. et al. (2016) ‘Adverse childhood experiences and trauma informed care: The future of health care’, Pediatric Research. Nature Publishing Group, pp. 227–233. 10.1038/pr.2015.197.

199

Weder, N. et al. (2014) ‘Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry’, Journal of the American Academy of Child and Adolescent Psychiatry. Elsevier Inc., 53(4). 10.1016/j.jaac.2013.12.025.

200

Song, H. et al. (2018) ‘Association of stress-related disorders with subsequent autoimmune disease’, JAMA — Journal of the American Medical Association. American Medical Association, 319(23), pp. 2388–2400. 10.1001/jama.2018.7028.

201

Zaneveld, J. R., McMinds, R. and Thurber, R. V. (2017) ‘Stress and stability: Applying the Anna Karenina principle to animal microbiomes’, Nature Microbiology. Nature Publishing Group. 10.1038/nmicrobiol.2017.121.

202

‘WHO | Burn-out an “occupational phenomenon”: International Classification of Diseases’ (2019) WHO. World Health Organization.

203

Chan, J. S. Y. et al. (2019) ‘Special Issue — Therapeutic Benefits of Physical Activity for Mood: A Systematic Review on the Effects of Exercise Intensity, Duration, and Modality’, Journal of Psychology: Interdisciplinary and Applied. Routledge, pp. 102–125. 10.1080/00223980.2018.1470487.

204

Zila, I. et al. (2017) ‘Vagal-immune interactions involved in cholinergic anti-inflammatory pathway’, Physiological Research. Czech Academy of Sciences, pp. S139–S145.

205

Morrison, I. (2016) ‘Keep Calm and Cuddle on: Social Touch as a Stress Buffer’, Adaptive Human Behavior and Physiology. Springer International Publishing, 2(4), pp. 344–362. 10.1007/s40750-016-0052-x.

206

Beetz, A. et al. (2012) ‘Psychosocial and psychophysiological effects of human-animal interactions: The possible role of oxytocin’, Frontiers in Psychology. 10.3389/fpsyg.2012.00234.

207

Black, D. S. and Slavich, G. M. (2016) ‘Mindfulness meditation and the immune system: a systematic review of randomized controlled trials’, Annals of the New York Academy of Sciences. Blackwell Publishing Inc., 1373(1), pp. 13–24. 10.1111/nyas.12998.

208

Kang, D. H. et al. (2011) ‘Dose effects of relaxation practice on immune responses in women newly diagnosed with breast cancer: An exploratory study’, Oncology Nursing Forum, 38(3). 10.1188/11.ONF.E240-E252.

209

Ulrich, R. S. (1984) ‘View through a window may influence recovery from surgery’, Science, 224(4647), pp. 420–421. 10.1126/science.6143402.

210

Velarde, M. D., Fry, G. and Tveit, M. (2007) ‘Health effects of viewing landscapes — Landscape types in environmental psychology’, Urban Forestry and Urban Greening. Elsevier GmbH, 6(4), pp. 199–212. 10.1016/j.ufug.2007.07.001.

211

Èâàí Ïåòðîâè÷ Ïàâëîâ (1849–1936) — ðóññêèé è ñîâåòñêèé ó÷åíûé, ôèçèîëîã, ñîçäàòåëü íàóêè î âûñøåé íåðâíîé äåÿòåëüíîñòè è ôèçèîëîãè÷åñêîé øêîëû; ëàóðåàò Íîáåëåâñêîé ïðåìèè ïî ôèçèîëîãèè è ìåäèöèíå 1904 ãîäà çà ðàáîòó ïî ôèçèîëîãèè ïèùåâàðåíèÿ. Àêàäåìèê Èìïåðàòîðñêîé Ñàíêò-Ïåòåðáóðãñêîé àêàäåìèè íàóê (1907), äåéñòâèòåëüíûé ñòàòñêèé ñîâåòíèê. Èçâåñòåí òåì, ÷òî ðàçäåëèë ñîâîêóïíîñòü ôèçèîëîãè÷åñêèõ ðåôëåêñîâ íà óñëîâíûå è áåçóñëîâíûå, à òàêæå èññëåäîâàë ïñèõîôèçèîëîãèþ òèïîâ òåìïåðàìåíòà è ñâîéñòâà íåðâíîé ñèñòåìû, ëåæàùèå â îñíîâå ïîâåäåí÷åñêèõ èíäèâèäóàëüíûõ ðàçëè÷èé. Ïðèì. ðåä.

212

Cohen, N., Moynihan, J. A. and Ader, R. (1994) ‘Pavlovian Conditioning of the Immune System’, International Archives of Allergy and Immunology, 105(2), pp. 101–106. 10.1159/000236811.

213

Vits, S. et al. (2011) ‘Behavioural conditioning as the mediator of placebo responses in the immune system’, Philosophical Transactions of the Royal Society B: Biological Sciences, pp. 1799–1807. 10.1098/rstb.2010.0392.

214

Zschucke, E. et al. (2015) ‘The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback’, Psychoneuroendocrinology. Elsevier Ltd, 51, pp. 414–425. 10.1016/j.psyneuen.2014.10.019.

215

Lunt, H. C. et al. (2010) ‘“Cross-adaptation”: Habituation to short repeated cold-water immersions affects the response to acute hypoxia in humans’, Journal of Physiology, 588(18), pp. 3605–3613. 10.1113/jphysiol.2010.193458.

216

Kröger, M. et al. (2015) ‘Whole-body Cryotherapy’s enhancement of acute recovery of running performance in well-trained athletes’, International Journal of Sports Physiology and Performance. Human Kinetics Publishers Inc., 10(5), pp. 605–612. 10.1123/ijspp.2014–0392.

217

Lubkowska, A. et al. (2011) ‘The effect of prolonged whole-body cryostimulation treatment with different amounts of sessions on chosen pro-and anti-inflammatory cytokines levels in healthy men’, Scandinavian Journal of Clinical and Laboratory Investigation, 71(5), pp. 419–425. 10.3109/00365513.2011.580859.

218

Pournot, H. et al. (2011) ‘Correction: Time-Course of Changes in Inflammatory Response after Whole-Body Cryotherapy Library of Science (PLoS), 6(11). 10.1371/annotation/0adb3312-7d2b-459c-97f7-a09cfecf5881.

219

Hirvonen, H. E. et al. (2006) ‘Effectiveness of different cryotherapies on pain and disease activity in active rheumatoid arthritis. A randomised single blinded controlled trial’, Clinical and Experimental Rheumatology, 24(3), pp. 295–301.

220

Šrámek, P. et al. (2000) ‘Human physiological responses to immersion into water of different temperatures’, European Journal of Applied Physiology, 81(5), pp. 436–442. 10.1007/s004210050065.

221

Hu, X., Goldmuntz, E. A. and Brosnan, C. F. (1991) ‘The effect of norepinephrine on endotoxin-mediated macrophage activation’, Journal of Neuroimmunology, 31(1), pp. 35–42. 10.1016/0165-5728(91)90084-K.

222

Ksiezopolska-Orłowska, K. et al. (2016) ‘Complex rehabilitation and the clinical condition of working rheumatoid arthritis patients: Does cryotherapy always overtop traditional rehabilitation?’, Disability and Rehabilitation. Taylor and Francis Ltd, 38(11), pp. 1034–1040. 10.3109/09638288.2015.1060265.

223

Gizińska, M. et al. (2015) ‘Effects of Whole-Body Cryotherapy in Comparison with Other Physical Modalities Used with Kinesitherapy in Rheumatoid Arthritis’, BioMed Research International. Hindawi Publishing Corporation, 2015. 10.1155/2015/409174.

224

Braun, K.-P. et al. (2009) ‘Whole-body cryotherapy in patients with inflammatory rheumatic disease. A prospective study.’, Medizinische Klinik, 104(3), pp. 192–196. 10.1007/s00063-009-1031-9.

225

Buijze, G. A. et al. (2016) ‘The effect of cold showering on health and work: A randomized controlled trial’, PLoS ONE. Public Library of Science, 11(9). 10.1371/journal.pone.0161749.

226

Bouzigon, R. et al. (2014) ‘The use of whole-body cryostimulation to improve the quality of sleep in athletes during high level standard competitions’, British Journal of Sports Medicine. BMJ, 48(7), pp. 572.1–572. 10.1136/bjsports-2014-093494.33.

227

Lombardi, G., Ziemann, E. and Banfi, G. (2017) ‘Whole-body cryotherapy in athletes: From therapy to stimulation. An updated review of the literature’, Frontiers in Physiology. Frontiers Research Foundation. 10.3389/fphys.2017.00258.

228

Laukkanen, T. et al. (2015) ‘Association between sauna bathing and fatal cardiovascular and all-cause mortality events’, JAMA Internal Medicine. American Medical Association, 175(4), pp. 542–548. 10.1001/jamainternmed.2014.8187.

229

Brunt, V. E. et al. (2016) ‘Passive heat therapy improves endothelial function, arterial stiffness and blood pressure in sedentary humans’, Journal of Physiology. Blackwell Publishing Ltd, 594(18), pp. 5329–5342. 10.1113/JP272453.

230

Faulkner, S. H. et al. (2017) ‘The effect of passive heating on heat shock protein 70 and interleukin-6: A possible treatment tool for metabolic diseases?’, Temperature, 4(3), pp. 292–304. 10.1080/23328940.2017.1288688.

231

Leicht, C. A. et al. (2017) ‘Increasing heat storage by wearing extra clothing during upper body exercise up-regulates heat shock protein 70 but does not modify the cytokine response’, Journal of Sports Sciences. Routledge, 35(17), pp. 1752–1758. 10.1080/02640414.2016.1235795.

232

Hauet-Broere, F. et al. (2006) ‘Heat shock proteins induce T cell regulation of chronic inflammation’, Annals of the Rheumatic Diseases. 10.1136/ard.2006.058495.

233

Singh, R. et al. (2010) ‘Anti-Inflammatory Heat Shock Protein 70 Genes are Positively Associated with Human Survival’, Current Pharmaceutical Design. Bentham Science Publishers Ltd., 16(7), pp. 796–801. 10.2174/138161210790883499.

234

Masuda, A. et al. (2005) ‘The effects of repeated thermal therapy for patients with chronic pain’, Psychotherapy and Psychosomatics, 74(5), pp. 288–294. 10.1159/000086319.

235

Selsby, J. T. et al. (2007) ‘Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading’, Journal of Applied Physiology, 102(4), pp. 1702–1707. 10.1152/japplphysiol.00722.2006.

236

Laukkanen, J. A. and Laukkanen, T. (2018) ‘Sauna bathing and systemic inflammation’, European Journal of Epidemiology. Springer Netherlands, pp. 351–353. 10.1007/s10654-017-0335-y.

237

Kunutsor, S. K., Laukkanen, T. and Laukkanen, J. A. (2017) ‘Frequent sauna bathing may reduce the risk of pneumonia in middle-aged Caucasian men: The KIHD prospective cohort study’, Respiratory Medicine. W.B. Saunders Ltd, 132, pp. 161–163. 10.1016/j.rmed.2017.10.018.

238

Kukkonen-Harjula, K. and Kauppinen, K. (1988) ‘How the sauna affects the endocrine system.’, Annals of Clinical Research, 20(4), pp. 262–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3218898 (Accessed: 1 December 2019).

239

De Heredia, F. P., Gómez-Martínez, S. and Marcos, A. (2012) ‘Chronic and degenerative diseases: Obesity, inflammation and the immune system’, in Proceedings of the Nutrition Society. Cambridge University Press, pp. 332–338. 10.1017/S0029665112000092.

240

McGreevy, K. R. et al. (2019) ‘Intergenerational transmission of the positive effects of physical exercise on brain and cognition’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 116(20), pp. 10103–10112. 10.1073/pnas.1816781116.

241

Grazioli, E. et al. (2017) ‘Physical activity in the prevention of human diseases: Role of epigenetic modifications’, BMC Genomics. BioMed Central Ltd. 10.1186/s12864-017-4193-5.

242

Hespe, G. E. et al. (2016) ‘Exercise training improves obesity-related lymphatic dysfunction’, Journal of Physiology. Blackwell Publishing Ltd, 594(15), pp. 4267–4282. 10.1113/JP271757.

243

Zaccardi, F. et al. (2019) ‘Comparative Relevance of Physical Fitness and Adiposity on Life Expectancy: A UK Biobank Observational Study’, Mayo Clinic Proceedings. Elsevier Ltd, 94(6), pp. 985–994. 10.1016/j.mayocp.2018.10.029.

244

Barrett, B. et al. (2012) ‘Meditation or exercise for preventing acute respiratory infection: A randomized controlled trial’, Annals of Family Medicine. Annals of Family Medicine, Inc, 10(4), pp. 337–346. 10.1370/afm.1376.

245

Nieman, D. C. et al. (2005) ‘Immune response to a 30-minute walk’, Medicine and Science in Sports and Exercise, 37(1), pp. 57–62. 10.1249/01.MSS.0000149808.38194.21.

246

Pascoe, A. R., Fiatarone Singh, M. A. and Edwards, K. M. (2014) ‘The effects of exercise on vaccination responses: A review of chronic and acute exercise interventions in humans’, Brain, Behavior, and Immunity. Academic Press Inc., pp. 33–41. 10.1016/j.bbi.2013.10.003.

247

Edwards, K. M. et al. (2006) ‘Acute stress exposure prior to influenza vaccination enhances antibody response in women’, Brain, Behavior, and Immunity, 20(2), pp. 159–168. 10.1016/j.bbi.2005.07.001.

248

Edwards, K. M. et al. (2007) ‘Eccentric exercise as an adjuvant to influenza vaccination in humans’, Brain, Behavior, and Immunity, 21(2), pp. 209–217. 10.1016/j.bbi.2006.04.158.

249

Pedersen, L. et al. (2016) ‘Voluntary running suppresses tumor growth through epinephrine- and IL-6-dependent NK cell mobilization and redistribution’, Cell Metabolism. Cell Press, 23(3), pp. 554–562. 10.1016/j.cmet.2016.01.011.

250

Campbell, J. P. and Turner, J. E. (2018) ‘Debunking the myth of exercise-induced immune suppression: Redefining the impact of exercise on immunological health across the lifespan’, Frontiers in Immunology. Frontiers Media S.A. 10.3389/fimmu.2018.00648.

251

Schafer, M. J. et al. (2016) ‘Exercise prevents diet-induced cellular senescence in adipose tissue’, Diabetes. American Diabetes Association Inc., 65(6), pp. 1606–1615. 10.2337/db15-0291.

252

Cottam, M. A. et al. (2018) ‘Links between Immunologic Memory and Metabolic Cycling’, The Journal of Immunology. The American Association of Immunologists, 200(11), pp. 3681–3689. 10.4049/jimmunol.1701713.

253

Gleeson, M., McFarlin, B. and Flynn, M. (2006) ‘Exercise and toll-like receptors’, Exercise Immunology Review, pp. 34–53.

254

Duggal, N. A. et al. (2018) ‘Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood’, Aging Cell, 17(2), p. e12750. 10.1111/acel.12750.

255

Bennett, J. A. and Winters-Stone, K. (2011) ‘Motivating older adults to exercise: what works?’, Age and Ageing, 40(2), pp. 148–149. 10.1093/ageing/afq182.

256

Zhao, M. et al. (2019) ‘Beneficial associations of low and large doses of leisure time physical activity with all-cause, cardiovascular disease and cancer mortality: A national cohort study of 88,140 US adults’, British Journal of Sports Medicine. BMJ Publishing Group, 53(22), pp. 1405–1411. 10.1136/bjsports-2018-099254.

257

Robinson, M. M. et al. (2017) ‘Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations to Different Exercise Training Modes in Young and Old Humans’, Cell Metabolism. Cell Press, 25(3), pp. 581–592. 10.1016/j.cmet.2017.02.009.

258

Rall, L. C. et al. (1996) ‘Effects of progressive resistance training on immune response in aging and chronic inflammation’, Medicine and Science in Sports and Exercise. Lippincott Williams and Wilkins, 28(11), pp. 1356–1365. 10.1097/00005768-199611000-00003.

259

Piasecki, J. et al. (2019) ‘Comparison of Muscle Function, Bone Mineral Density and Body Composition of Early Starting and Later Starting Older Masters Athletes’, Frontiers in Physiology, 10. 10.3389/fphys.2019.01050.

260

Guthold, R. et al. (2018) ‘Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1. 9 million participants’, The Lancet Global Health. Elsevier Ltd, 6(10), pp. e1077–e1086. 10.1016/S2214-109X(18)30357-7.

261

Ïàðêðàí (îò àíãë. parkrun) — áåñïëàòíûå åæåíåäåëüíûå ìåðîïðèÿòèÿ, êîòîðûå ïðîâîäÿòñÿ ñîîáùåñòâîì âîëîíòåðîâ ïî âñåìó ìèðó: êàæäóþ ñóááîòó òûñÿ÷è ëþäåé ñîáèðàþòñÿ â ïàðêàõ è áåãóò äèñòàíöèþ ïÿòü êèëîìåòðîâ. Ïðèì. ïåðåâ.

262

Vairo, G. L. et al. (2009) ‘Systematic Review of Efficacy for Manual Lymphatic Drainage Techniques in Sports Medicine and Rehabilitation: An Evidence-Based Practice Approach’, Journal of Manual & Manipulative Therapy. Informa UK Limited, 17(3), pp. 80E–89E. 10.1179/jmt.2009.17.3.80e.

263

Poppendieck, W. et al. (2016) ‘Massage and Performance Recovery: A Meta-Analytical Review’, Sports Medicine. Springer International Publishing, pp. 183–204. 10.1007/s40279-015-0420-x.

264

Abolins, S. et al. (2018) ‘The ecology of immune state in a wild mammal, Mus musculus domesticus’, PLOS Biology. Edited by D. Schneider, 16(4), p. e2003538. 10.1371/journal.pbio.2003538.

265

Fuss, J. et al. (2015) ‘A runner’s high depends on cannabinoid receptors in mice’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 112(42), pp. 13105–13108. 10.1073/pnas.1514996112.

266

Dietrich, A. and McDaniel, W. F. (2004) ‘Endocannabinoids and exercise’, British Journal of Sports Medicine, pp. 536–541. 10.1136/bjsm.2004.011718.

267

Raichlen, D. A. et al. (2012) ‘Wired to run: Exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the “runner’s high”’, Journal of Experimental Biology, 215(8), pp. 1331–1336. 10.1242/jeb.063677.

268

Mørch, H. and Pedersen, B. K. (1995) ‘βendorphin and the immune system — possible role in autoimmune diseases’, Autoimmunity. Informa Healthcare, 21(3), pp. 161–171. 10.3109/08916939509008013.

269

Schwarz, L. and Kindermann, W. (1992) ‘Changes in β-Endorphin Levels in Response to Aerobic and Anaerobic Exercise’, Sports Medicine: An International Journal of Applied Medicine and Science in Sport and Exercise, pp. 25–36. 10.2165/00007256-199213010-00003.

270

Kraemer, W. J. et al. (1992) ‘Acute hormonal responses in elite junior weightlifters’, International Journal of Sports Medicine, 13(2), pp. 103–109. 10.1055/s-2007-1021240.

271

IL-6 îêàçûâàåò ìåòàáîëè÷åñêèå è ïðîòèâîâîñïàëèòåëüíûå ýôôåêòû ïðè ôèçè÷åñêèõ íàãðóçêàõ. Öèòîêèíîâûé îòâåò ïðè ñîêðàùåíèè ìûøö ñïåöèôè÷åí. Ïðèì. íàó÷. ðåä.

272

Ekblom, B., Ekblom, Ö. and Malm, C. (2006) ‘Infectious episodes before and after a marathon race’, Scandinavian Journal of Medicine and Science in Sports, 16(4), pp. 287–293. 10.1111/j.1600–0838.2005.00490.x.

273

Fahlman, M., Engels, H. and Hall, H. (2017) ‘SIgA and Upper Respiratory Syndrome During a College Cross Country Season’, Sports Medicine International Open. Georg Thieme Verlag KG, 1(06), pp. E188–E194. 10.1055/s-0043-119090.

274

Cavaglieri, C. R. et al. (2011) ‘Immune parameters, symptoms of upper respiratory tract infections, and training-load indicators in volleyball athletes’, International Journal of General Medicine. Dove Medical Press Ltd., p. 837. 10.2147/ijgm.s24402.

275

Parker, S., Brukner, P. and Rosier, M. (1996) ‘Chronic fatigue syndrome and the athlete’, Sports Medicine, Training and Rehabilitation. Taylor and Francis Ltd., 6(4), pp. 269–278. 10.1080/15438629609512057.

276

Meeusen, R. et al. (2013) ‘Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine’, Medicine and Science in Sports and Exercise, 45(1), pp. 186–205. 10.1249/MSS.0b013e318279a10a.

277

Costa, R. J. S. et al. (2017) ‘Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease’, Alimentary Pharmacology & Therapeutics, 46(3), pp. 246–265. 10.1111/apt.14157.

278

Spence, L. et al. (2007) ‘Incidence, etiology, and symptomatology of upper respiratory illness in elite athletes’, Medicine and Science in Sports and Exercise, 39(4), pp. 577–586. 10.1249/mss.0b013e31802e851a.

279

Íàïðèìåð, êîãäà îæèäàåòñÿ âñòðå÷à âûïóñêíèêîâ, ê êîòîðîé íåïðåìåííî íóæíî âëåçòü â ïëàòüå äåòñêîãî ðàçìåðà. Ðàäè òàêîé «áëàãîðîäíîé» öåëè ìíîãèå ïîñëå äëèòåëüíûõ ìåñÿöåâ ñèäåíèÿ â îôèñå äîáðîâîëüíî ïðîáåãàþò äåñÿòêè êèëîìåòðîâ íà áåãîâîé äîðîæêå èëè èñòÿçàþò ñåáÿ â òðåíàæåðíîì çàëå äíè íàïðîëåò. Ñèëà âîëè òàêèõ ëþäåé, êîíå÷íî, âîñõèùàåò, îäíàêî, óâû, ýòî íå èìååò íè÷åãî îáùåãî ñ èììóíèòåòîì è çäîðîâüåì. Ïðèì. íàó÷. ðåä.

280

Svendsen, I. S. et al. (2016) ‘Training-related and competition-related risk factors for respiratory tract and gastrointestinal infections in elite cross-country skiers’, British Journal of Sports Medicine. BMJ Publishing Group, 50(13), pp. 809–815. 10.1136/bjsports-2015-095398.

281

Cavaglieri, C. R. et al. (2011) ‘Immune parameters, symptoms of upper respiratory tract infections, and training-load indicators in volleyball athletes’, International Journal of General Medicine. Dove Medical Press Ltd., p. 837. 10.2147/ijgm.s24402.

282

Marqués-Jiménez, D. et al. (2016) ‘Are compression garments effective for the recovery of exercise-induced muscle damage? A systematic review with meta-analysis’, Physiology and Behavior. Elsevier Inc., pp. 133–148. 10.1016/j.physbeh.2015.10.027.

283

Costello, J. T. et al. (2015) ‘Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults’, Cochrane Database of Systematic Reviews. 10.1002/14651858.CD010789.pub2.

284

Hohenauer, E. et al. (2015) ‘The effect of post-exercise cryotherapy on recovery characteristics: A systematic review and meta-analysis’, PLoS ONE. Public Library of Science, 10(9). 10.1371/journal.pone.0139028.

285

Gunzer, W., Konrad, M. and Pail, E. (2012) ‘Exercise-induced immunodepression in endurance athletes and nutritional intervention with carbohydrate, protein and fat — what is possible, what is not?’, Nutrients. MDPI AG, pp. 1187–1212. 10.3390/nu4091187.

286

Weidner, T. G. et al. (1998) ‘The effect of exercise training on the severity and duration of a viral upper respiratory illness’, Medicine and Science in Sports and Exercise. American College of Sports Medicine, 30(11), pp. 1578–1583. 10.1097/00005768-199811000-00004.

287

Ëèïèäíûé ïðîôèëü, èëè ëèïèäîãðàììà, — ýòî áèîõèìè÷åñêèé àíàëèç êðîâè íà õîëåñòåðèí è åãî ôðàêöèè. Îòêëîíåíèÿ ïîêàçàòåëåé ëèïèäîãðàììû îò ðåôåðåíòíûõ çíà÷åíèé óêàçûâàþò íà âåðîÿòíîñòü ðàçâèòèÿ ó ÷åëîâåêà çàáîëåâàíèé ñîñóäîâ, ïå÷åíè, æåë÷íîãî ïóçûðÿ, àòåðîñêëåðîçà, à òàêæå ïîçâîëÿþò ñïðîãíîçèðîâàòü ðèñê âîçíèêíîâåíèÿ ïàòîëîãèè. Ïðèì. ïåðåâ.

288

Arrieta, M. C., Bistritz, L. and Meddings, J. B. (2006) ‘Alterations in intestinal permeability’, Gut, pp. 1512–1520. 10.1136/gut.2005.085373.

289

Ïðè ïëàíèðîâàíèè ðåæèìà òðóäà è îòäûõà è ïåðåä ñîñòàâëåíèåì ïëàíà òðåíèðîâîê íå ëèøíèì áóäåò ïîñîâåòîâàòüñÿ ñ ëå÷àùèì âðà÷îì. Ïðèì. íàó÷. ðåä.

290

Sharif, K. et al. (2017) ‘Physical activity and autoimmune diseases: Get moving and manage the disease’. 10.1016/j.autrev.2017.11.010.

291

Iversen, M. D. et al. (2017) ‘Physical Activity and Correlates of Physical Activity Participation Over Three Years in Adults with Rheumatoid Arthritis’, Arthritis Care and Research. John Wiley and Sons Inc., 69(10), pp. 1535–1545. 10.1002/acr.23156.

292

Íåéðîòðîôè÷åñêèé ôàêòîð ãîëîâíîãî ìîçãà îáëàäàåò öåëûì ðÿäîì ïîëåçíûõ ñâîéñòâ: ïîääåðæèâàåò äèôôåðåíöèàöèþ, ñîçðåâàíèå è âûæèâàåìîñòü íåéðîíîâ â íåðâíîé ñèñòåìå, óãíåòàåò êëåòî÷íûé àïîïòîç è îêàçûâàåò ñóùåñòâåííîå íåéðîïðîòåêòèâíîå âëèÿíèå íà ñòðóêòóðû ãîëîâíîãî ìîçãà. Ïðèì. íàó÷. ðåä.

293

O’Neill, H. M. (2013) ‘AMPK and exercise: Glucose uptake and insulin sensitivity’, Diabetes and Metabolism Journal, pp. 1–21. 10.4093/dmj.2013.37.1.1.

294

Âî èçáåæàíèå óãðîçû ïðèñòóïà àñòìû ïåðåä ñîñòàâëåíèåì ïëàíà òðåíèðîâîê îáÿçàòåëüíî ïðîêîíñóëüòèðóéòåñü ñ èììóíîëîãîì. Ïðèì. íàó÷. ðåä.

295

Johnson, J. L. et al. (2007) ‘Exercise Training Amount and Intensity Effects on Metabolic Syndrome (from Studies of a Targeted Risk Reduction Intervention through Defined Exercise)’, American Journal of Cardiology, 100(12), pp. 1759–1766. 10.1016/j.amjcard.2007.07.027.

296

Ðåêîìåíäîâàííàÿ äîçà âèòàìèíà Ñ â Ðîññèè äëÿ âçðîñëûõ ñîñòàâëÿåò 75–90 ìèëëèãðàììîâ â ñóòêè. Ïîëèíã ñîâåòîâàë óâåëè÷èòü äîçó äî 12 ãðàììîâ â ñóòêè, ñàì ïðè ýòîì ïðèíèìàë ïî÷òè 18 ãðàììîâ â ñóòêè â òå÷åíèå 30 ëåò. Ïðèì. ïåðåâ.

297

Hemilä, H. (1997) ‘Vitamin C supplementation and the common cold — Was Linus Pauling right or wrong?’, International Journal for Vitamin and Nutrition Research, 67(5), pp. 329–335.

298

Hemilä, H. and Chalker, E. (2013) ‘Vitamin C for preventing and treating the common cold’, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd. 10.1002/14651858.CD000980.pub4.

299

Mocchegiani, E. (2007) ‘Zinc and ageing: Third Zincage conference’, Immunity and Ageing, 4. 10.1186/1742-4933-4-5.

300

Singh, M. and Das, R. R. (2011) ‘Zinc for the common cold’, in Singh, M. (ed.) Cochrane Database of Systematic Reviews. Chichester, UK: John Wiley & Sons, Ltd. 10.1002/14651858.CD001364.pub3.

301

Public Health England (2016) ‘National Diet and Nutrition Survey — GOV.UK’, Public Health England, 3, pp. 1–79. Available at: https://www.gov.uk/government/collections/national-diet-and-nutrition-survey (Accessed: 16 December 2019).

302

Maggini, S., Pierre, A. and Calder, P. (2018) ‘Immune Function and Micronutrient Requirements Change over the Life Course’, Nutrients, 10(10), p. 1531. 10.3390/nu10101531.

303

Arola-Arnal, A. et al. (2019) ‘Chrononutrition and Polyphenols: Roles and Diseases’, Nutrients, 11(11), p. 2602. 10.3390/nu11112602.

304

Barański, M. et al. (2014) ‘Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses’, British Journal of Nutrition. Cambridge University Press, pp. 794–811. 10.1017/S0007114514001366.

305

Ristow, M. et al. (2009) ‘Antioxidants prevent health-promoting effects of physical exercise in humans’, Proceedings of the National Academy of Sciences of the United States of America, 106(21), pp. 8665–8670. 10.1073/pnas.0903485106.

306

Peternelj, T. T. and Coombes, J. S. (2011) ‘Antioxidant supplementation during exercise training: Beneficial or detrimental?’, Sports Medicine, pp. 1043–1069. 10.2165/11594400-000000000-00000.

307

Wu, G. (2013) ‘Arginine and immune function’, in Diet, Immunity and Inflammation. Elsevier Ltd., pp. 523–543. 10.1533/9780857095749.3.523.

308

Cruzat, V. et al. (2018) ‘Glutamine: Metabolism and immune function, supplementation and clinical translation’, Nutrients. MDPI AG. 10.3390/nu10111564.

309

Ïðèíÿòî ñ÷èòàòü, ÷òî îäíà ÷àøêà (1 cup) — 240 ìèëëèëèòðîâ. Äëÿ óäîáñòâà ìîæíî èñïîëüçîâàòü îáû÷íûé ñòàêàí, ðàâíûé 250 ìèëëèëèòðàì. Ïðèì. ïåðåâ.

310

Brigham, E. P. et al. (2019) ‘Omega-3 and Omega-6 Intake Modifies Asthma Severity and Response to Indoor Air Pollution in Children’, American Journal of Respiratory and Critical Care Medicine, 199(12), pp. 1478–1486. 10.1164/rccm.201808-1474OC.

311

Sun, Q., Li, J. and Gao, F. (2014) ‘New insights into insulin: The anti-inflammatory effect and its clinical relevance’, World Journal of Diabetes. Baishideng Publishing Group Inc., 5(2), p. 89. 10.4239/wjd.v5.i2.89.

312

Aeberli, I. et al. (2011) ‘Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: A randomized controlled trial’, American Journal of Clinical Nutrition, 94(2), pp. 479–485. 10.3945/ajcn.111.013540.

313

Duncan, S. H. et al. (2007) ‘Reduced Dietary Intake of Carbohydrates by Obese Subjects Results in Decreased Concentrations of Butyrate and Butyrate-Producing Bacteria in Feces’, Applied and Environmental Microbiology, 73(4), pp. 1073–1078. 10.1128/AEM.02340-06.

314

Ïðè öåëèàêèè óïîòðåáëåíèå ãëþòåíà çàòðàãèâàåò íå òîëüêî îòäåëüíûå îðãàíû, íî è öåëûå ñèñòåìû â îðãàíèçìå. Ïðèì. íàó÷. ðåä.

315

Öåëèàêèÿ, ê ïðèìåðó, ìîæåò ïðèâåñòè ê ðàçâèòèþ òàê íàçûâàåìîé MALT-ëèìôîìû — îïóõîëè ëèìôîèäíîé òêàíè, àññîöèèðîâàííîé ñî ñëèçèñòûìè îáîëî÷êàìè. Ïðèì. íàó÷. ðåä.

316

Àññîðòèìåíò áåçãëþòåíîâûõ ïðîäóêòîâ íà ïðèëàâêàõ íåèçìåííî ðàñòåò. Ïðèì. íàó÷. ðåä.

317

Catassi, C. et al. (2013) ‘Non-celiac gluten sensitivity: The new frontier of gluten related disorders’, Nutrients. MDPI AG, pp. 3839–3853. 10.3390/nu5103839.

318

Sapone, A. et al. (2012) ‘Spectrum of gluten-related disorders: consensus on new nomenclature and classification’, BMC Medicine, 10(1), p. 13. 10.1186/1741-7015-10-13.

319

Sapone, A. et al. (2011) ‘Divergence of gut permeability and conditions: celiac disease and gluten sensitivity’, BMC Medicine, 9(1), p. 23. 10.1186/1741-7015-9-23.

320

Ïðè ëèõîðàäêå óìåíüøàåòñÿ ôóíêöèîíàëüíàÿ àêòèâíîñòü ïèùåâàðèòåëüíîé ñèñòåìû, ÷òî õàðàêòåðèçóåòñÿ ñîêðàùåíèåì êàê ìîòîðíîé, òàê è ôåðìåíòíîé àêòèâíîñòè, à òàêæå ñíèæåíèåì âñàñûâàíèÿ ïèòàòåëüíûõ âåùåñòâ. È ïîýòîìó òðåáóåòñÿ äèåòè÷åñêàÿ ðàçãðóçêà èëè êðàòêîâðåìåííîå ãîëîäàíèå. Íî íåîáõîäèìî ïîìíèòü, ÷òî ïðè ýòîì âàæíî ïîëó÷àòü äîñòàòî÷íîå êîëè÷åñòâî æèäêîñòè. Ïðèì. íàó÷. ðåä.

321

Ó ìíîãèõ ëþäåé âî âðåìÿ áîëåçíè àïïåòèò ñíèæàåòñÿ åñòåñòâåííûì îáðàçîì, è âàæíî ðóêîâîäñòâîâàòüñÿ çäðàâûì ñìûñëîì, îãðàíè÷èâàÿ ñåáÿ â ïèùå. Ïðèì. íàó÷. ðåä.

322

Ñèñòåìà ïèùåâàðåíèÿ ñòàíîâèòñÿ îáúåêòîì âîçäåéñòâèÿ ïàòîãåííûõ ôàêòîðîâ ëèõîðàäêè: ïîäàâëÿåòñÿ îáðàçîâàíèå ïîäæåëóäî÷íîé æåëåçîé ïèùåâàðèòåëüíûõ ôåðìåíòîâ è ïå÷åíüþ — æåë÷è, íàðóøàåòñÿ âñàñûâàíèå è óñâîåíèå êîìïîíåíòîâ ïèùè. Òàêèì îáðàçîì óñóãóáëÿåòñÿ òå÷åíèå çàáîëåâàíèÿ, ïîñêîëüêó ê ëèõîðàäêå äîáàâëÿþòñÿ òàêèå ñèìïòîìû, êàê âçäóòèå æèâîòà, ðàññòðîéñòâî ñòóëà, òîøíîòà è ðâîòà. Âîò òàê è îáúÿñíÿåòñÿ ñ íàó÷íîé òî÷êè çðåíèÿ âûðàæåíèå «óìîðèòå ëèõîðàäêó ãîëîäîì». Ïðèì. íàó÷. ðåä.

323

Dixit, V. D. et al. (2011) ‘Controlled meal frequency without caloric restriction alters peripheral blood mononuclear cell cytokine production’, Journal of Inflammation, 8. 10.1186/1476-9255-8-6.

324

Willebrand, R. and Kleinewietfeld, M. (2018) ‘The role of salt for immune cell function and disease’, Immunology. Blackwell Publishing Ltd, pp. 346–353. 10.1111/imm.12915.

325

Yosef, N. et al. (2013) ‘Dynamic regulatory network controlling TH 17 cell differentiation’, Nature, 496(7446), pp. 461–468. 10.1038/nature11981.

326

Wu, C. et al. (2013) ‘Induction of pathogenic TH 17 cells by inducible salt-sensing kinase SGK1’, Nature, 496(7446), pp. 513–517. 10.1038/nature11984.

327

Sundstrom, B., Johansson, I. and Rantapaa-Dahlqvist, S. (2015) ‘Interaction between dietary sodium and smoking increases the risk for rheumatoid arthritis: results from a nested case-control study’, Rheumatology, 54(3), pp. 487–493. 10.1093/rheumatology/keu330.

328

Gill, S. and Panda, S. (2015) ‘A Smartphone App Reveals Erratic Diurnal Eating Patterns in Humans that Can Be Modulated for Health Benefits’, Cell Metabolism. Cell Press, 22(5), pp. 789–798. 10.1016/j.cmet.2015.09.005.

329

Casas, R., Sacanella, E. and Estruch, R. (2014) ‘The Immune Protective Effect of the Mediterranean Diet against Chronic Low-grade Inflammatory Diseases’, Endocrine, Metabolic & Immune Disorders-Drug Targets. Bentham Science Publishers Ltd., 14(4), pp. 245–254. 10.2174/1871530314666140922153350.

330

Sureda, A. et al. (2018) ‘Adherence to the Mediterranean diet and inflammatory markers’, Nutrients. MDPI AG, 10(1). 10.3390/nu10010062.

331

Mutlu, E. A. et al. (2012) ‘Colonic microbiome is altered in alcoholism’, American Journal of Physiology — Gastrointestinal and Liver Physiology, 302(9). 10.1152/ajpgi.00380.2011.

332

Queipo-Ortuño, M. I. et al. (2012) ‘Influence of red wine biochemical biomarkers’, American Journal of Clinical Nutrition, 95(6), pp. 1323–1334. 10.3945/ajcn.111.027847.

333

Èììóííàÿ ñèñòåìà âîñïðèíèìàåò ìîëåêóëû ïèùè êàê ðàçäðàæèòåëü, âûðàáàòûâàÿ èììóíîãëîáóëèíû Å — áåëêè èììóííîé ñèñòåìû, îòâåòñòâåííûå çà ðàçâèòèå àëëåðãè÷åñêèõ ðåàêöèé. Ïðèì. íàó÷. ðåä.

334

Ýòî àíàëèç êðîâè íà ñïåöèôè÷åñêèå èììóíîãëîáóëèíû E ê îïðåäåëåííûì àëëåðãåíàì. Ïðèì. íàó÷. ðåä.

335

Zopf, Y. et al. (2009) ‘Differenzialdiagnose von nahrungsmittelunverträglichkeiten’, Deutsches Arzteblatt, 106(21), pp. 359–370. 10.3238/arztebl.2009.0359.

336

Venter, C. et al. (2008) ‘Prevalence and cumulative incidence of food hypersensitivity in the first 3 years of life’, Allergy: European Journal of Allergy and Clinical Immunology, 63(3), pp. 354–359. 10.1111/j.1398–9995.2007.01570.x.

337

Isolauri, E. et al. (1998) ‘Elimination diet in cow’s milk allergy: Risk for impaired growth in young children’, Journal of Pediatrics. Mosby Inc., 132(6), pp. 1004–1009. 10.1016/S0022-3476(98)70399-3.

338

Ôèáðîìèàëãèÿ — ôîðìà ïîðàæåíèÿ âíåñóñòàâíûõ ìÿãêèõ òêàíåé, õàðàêòåðèçóþùàÿñÿ ðàçëèòîé êîñòíî-ìûøå÷íîé áîëüþ è íàëè÷èåì ñïåöèôè÷åñêèõ áîëåçíåííûõ òî÷åê èëè òî÷åê ïîâûøåííîé ÷óâñòâèòåëüíîñòè, îïðåäåëÿåìûõ ïðè îùóïûâàíèè. Ïðèì. ïåðåâ.

339

Ozdemir, O. et al. (2009) ‘Food intolerances and eosinophilic esophagitis in childhood’, Digestive Diseases and Sciences, pp. 8–14. 10.1007/s10620-008-0331-x.

340

Ïèùåâàðèòåëüíàÿ ñèñòåìà, êàê ïðàâèëî, òîëåðàíòíà ê ðàçíîîáðàçèþ ïîïàäàþùèõ â îðãàíèçì áèîëîãè÷åñêèõ ìàêðîìîëåêóë, îäíàêî â ïîñëåäíåå âðåìÿ îòìå÷àåòñÿ ðîñò êîëè÷åñòâà ïàöèåíòîâ, ñòðàäàþùèõ ïèùåâîé íåïåðåíîñèìîñòüþ, êîòîðàÿ âûçâàíà ðàçíûìè ïðè÷èíàìè. Ïðèì. íàó÷. ðåä.

341

avaiano, D. A. et al. (2013) ‘Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): A randomized, double-blind clinical trial’, Nutrition Journal. BioMed Central Ltd., 12(1). 10.1186/1475-2891-12-160.

342

Fitzgerald, M. and Frankum, B. (2017) ‘Food avoidance and restriction in adults: a cross-sectional pilot study comparing patients from an immunology clinic to a general practice’, Journal of Eating Disorders, 5(1), p. 30. 10.1186/s40337-017-0160-4.

343

First, M. B. (2013) DSM-5® Handbook of Differential Diagnosis. American Psychiatric Publishing. 10.1176/appi.books.9781585629992.

344

×àñòî ëþäè, ñàìîäèàãíîñòèðîâàâøèå òó èëè èíóþ ïèùåâóþ íåïåðåíîñèìîñòü, â ðåàëüíîñòè åþ íå ñòðàäàþò: ôîáèÿ íîñèò èñêëþ÷èòåëüíî ïñèõîñîìàòè÷åñêèé õàðàêòåð. Ïðèì. íàó÷. ðåä.

345

Hammond, C. and Lieberman, J. A. (2018) ‘Unproven Diagnostic Tests for Food Allergy’, Immunology and Allergy Clinics of North America. W.B. Saunders, pp. 153–163. 10.1016/j.iac.2017.09.011.

346

Lavine, E. (2012) ‘Primer: Blood testing for sensitivity, allergy or intolerance to food’, CMAJ. Canadian Medical Association, 184(6), pp. 666–668. 10.1503/cmaj.110026.

347

Mullin, G. E. et al. (2010) ‘Testing for food reactions: The good, the bad, and the ugly’, Nutrition in Clinical Practice, pp. 192–198. 10.1177/0884533610362696.

348

Stapel, S. O. et al. (2008) ‘Testing for IgG4 against foods is not recommended as a diagnostic tool: EAACI Task Force Report*’, Allergy, 63(7), pp. 793–796. 10.1111/j.1398–9995.2008.01705.x.

349

Âîäîðîä âûñâîáîæäàåòñÿ ëèøü â ïðîöåññå àíàýðîáíîãî îáìåíà âåùåñòâ (òî åñòü ïðè îòñóòñòâèè äîñòóïà êèñëîðîäà). Êèøå÷íèê — ìåñòî îáèòàíèÿ áîëüøîãî êîëè÷åñòâà áàêòåðèé, îñíîâíûìè èç êîòîðûõ ÿâëÿþòñÿ àíàýðîáû, ïðîäóöèðóþùèå âîäîðîä â çíà÷èòåëüíîì êîëè÷åñòâå. Èç ÷åãî ñëåäóåò, ÷òî èñòî÷íèêîì âîäîðîäà â âûäûõàåìîì âîçäóõå ñòàíîâÿòñÿ àíàýðîáíûå áàêòåðèè. Ïðèì. íàó÷. ðåä.

350

Gibson, P. R. et al. (2007) ‘Review article: Fructose malabsorption and the bigger picture’, Alimentary Pharmacology and Therapeutics, pp. 349–363. 10.1111/j.1365–2036.2006.03186.x.

351

Êàðíîçèí ñïîñîáåí ìîäóëèðîâàòü èììóííóþ ñèñòåìó: óñòàíîâëåíî, ÷òî îí óñèëèâàåò «êèñëîðîäíûé âçðûâ» — îäèí èç ýòàïîâ ôàãîöèòîçà, êîòîðûé ÿâëÿåòñÿ îñíîâíûì êëåòî÷íûì êîíñòèòóòèâíûì ôàêòîðîì çàùèòû. Ïðèì. íàó÷. ðåä.

352

Michel, C. et al. (2014) ‘A taste of Kandinsky: assessing the influence of the artistic visual presentation of food on the dining experience’, Flavour, 3(1), p. 7. 10.1186/2044-7248-3-7.

Âåðíóòüñÿ ê ïðîñìîòðó êíèãè Âåðíóòüñÿ ê ïðîñìîòðó êíèãè