Ïðèìå÷àíèÿ êíèãè: Òðåùèíà â ìèðîçäàíèè - ÷èòàòü îíëàéí, áåñïëàòíî. Àâòîð: Ñýìþåë Ñòåðíáåðã, Äæåííèôåð Äàóäíà

÷èòàòü êíèãè îíëàéí áåñïëàòíî
 
 

Îíëàéí êíèãà - Òðåùèíà â ìèðîçäàíèè

Äæåííèôåð Äàóäíà – îäíà èç âåäóùèõ ñîâðåìåííûõ ãåíåòèêîâ, ïîä åå ðóêîâîäñòâîì áûëà ðàçðàáîòàíà òåõíîëîãèÿ ðåäàêòèðîâàíèÿ ãåíîìà CRISPR – ñàìûé äåøåâûé, íî ïðè ýòîì ñàìûé òî÷íûé è ìîùíûé ñïîñîá ìàíèïóëÿöèé ñ ÄÍÊ. Íî äîâîëüíî áûñòðî ñòàëî ïîíÿòíî, ÷òî ýòîò ìåòîä, ïîçâîëÿþùèé ïðèöåëüíî èçìåíÿòü ÄÍÊ æèâîãî îðãàíèçìà, – î÷åíü ðèñêîâàííàÿ òåõíîëîãèÿ, êîòîðóþ óæå íàçûâàþò “ñàìûì îïàñíûì èçîáðåòåíèåì ñî âðåìåí àòîìíîé áîìáû”. Ãåíåòè÷åñêèå ìàíèïóëÿöèè – ýòî íàñòîÿùàÿ “òðåùèíà â ìèðîçäàíèè”, èç êîòîðîé ìîãóò âûðâàòüñÿ òåìíûå ñèëû, ñïîñîáíûå óíè÷òîæèòü ÷åëîâå÷åñòâî…

Ïåðåéòè ê ÷òåíèþ êíèãè ×èòàòü êíèãó « Òðåùèíà â ìèðîçäàíèè »

Ïðèìå÷àíèÿ

1

Èìåþòñÿ â âèäó êóõòûëè – ïîïëàâêè äëÿ ñåòåé.  íàøè äíè îíè îáû÷íî ïëàñòèêîâûå, íî ðàíüøå âûäóâàëèñü èç ñòåêëà â âèäå áîëüøèõ ïîëûõ øàðîâ (ïðèìå÷. íàó÷. ðåä.).

2

Ñòîèò îòìåòèòü, ÷òî ýòî âðÿä ëè âîçìîæíî. Äåëî íå òîëüêî â òîì, ÷òî äëÿ ýòîãî íåò äîñòàòî÷íî ñîõðàííûõ êëåòîê ìàìîíòîâ, íî è â òîì, ÷òî ñîâðåìåííûå ñëîíû íå ñêðåùèâàþòñÿ äàæå ñ ñàìûìè áëèçêîðîäñòâåííûìè âèäàìè. Ïðè÷èíû òàêîé èçáèðàòåëüíîñòè ïîêà íåèçâåñòíû, íî åñòü âåðîÿòíîñòü, ÷òî âèíîé òîìó íåêèå ãåíåòè÷åñêèå áàðüåðû. Ñì. Eleftheria Palkopoulou et al. Genomic history of extinct and living elephantids, Proceedings of the National Academy of Sciences, Mar 2018, 115 (11), E2566 – E2574; DOI:10.1073/pnas.1720554115. – Çäåñü è äàëåå ïîñòðàíè÷íûå ñíîñêè, îáîçíà÷åííûå àñòåðèñêîì (*), åñëè íå óêàçàíî èíîå, ïðèíàäëåæàò ïåðåâîä÷èêó. Ñíîñêè, îáîçíà÷åííûå öèôðàìè, âåäóò â êîíåö êíèãè è ïðèíàäëåæàò àâòîðó.

3

Èññëåäîâàíèÿ ïîñëåäíèõ ëåò ãîâîðÿò î òîì, ÷òî âîçðàñò ÷åëîâåêà ðàçóìíîãî êàê âèäà áîëüøå. Ðàáîòà 2017 ãîäà, â õîäå êîòîðîé èçó÷àëèñü îñòàòêè Homo sapiens èç ìàðîêêàíñêîé ïåùåðû Äæåáåëü-Èðõóä, ïîêàçûâàåò, ÷òî íàøåìó âèäó êàê ìèíèìóì 200 òûñÿ÷ ëåò. Ñì. Jean-Jacques Hublin et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens, Nature, volume 546, pages 289–292 (08 June 2017), DOI: 10.1038/nature22336.

4

Ìîäåëüíûå æèâîòíûå – ýòî îðãàíèçìû, ñòðîåíèå êîòîðûõ â äîñòàòî÷íîé ñòåïåíè ïîõîæå íà ñòðîåíèå ÷åëîâåêà; â õîäå ýêñïåðèìåíòîâ íà ìîäåëüíûõ æèâîòíûõ ìîæíî óòî÷íÿòü ìåõàíèçìû ðàçâèòèÿ è ïðîòåêàíèÿ áîëåçíåé ÷åëîâåêà è îïðåäåëÿòü ýôôåêòèâíîñòü ëåêàðñòâ ïðîòèâ ýòèõ áîëåçíåé.

5

Ýòîò ãåí êîäèðóåò áåëîê ãåíòèíãòèí. Âàðèàíòû ýòîé ìîëåêóëû, êîòîðûå îáðàçóþòñÿ â êëåòêàõ ñ ìóòàöèÿìè â ãåíå HTT, âûçûâàþò õîðåþ Ãåíòèíãòîíà – íàðóøåíèå óìñòâåííîé äåÿòåëüíîñòè è äâèæåíèé.

6

D. H. McDermott et al., “Chromothriptic Cure of WHIM Syndrome”, Cell 160 (2015): 686–699.

7

WHIM íàçâàí ïî åãî ÷åòûðåì îñíîâíûì ïðîÿâëåíèÿì: warts (áîðîäàâêè), hypogammaglobulinemia (ãèïîãàììàãëîáóëèíåìèÿ, íåõâàòêà îïðåäåëåííîãî òèïà èììóíîãëîáóëèíà), infections (èíôåêöèè) è myelokathexis (ìèåëîêàòåêñèñ, äåôèöèò îïðåäåëåííûõ òèïîâ áåëûõ êðîâÿíûõ òåëåö).

8

P. J. Stephens et al., “Massive Genomic Rearrangement Acquired in a Single Catastrophic Event During Cancer Development”, Cell 144 (2011): 27–40.

9

R. Hirschhorn, “In Vivo Reversion to Normal of Inherited Mutations in Humans”, Journal of Medical Genetics 40 (2003): 721–728.

10

R. Hirschhorn et al., “Somatic Mosaicism for a Newly Identified Splice-Site Mutation in a Patient with Adenosine Deaminase-Deficient Immunodeficiency and Spontaneous Clinical Recovery”, American Journal of Human Genetics 55 (1994): 59–68.

11

B. R. Davis and F. Candotti, “Revertant Somatic Mosaicism in the Wiskott-Aldrich Syndrome”, Immunologic Research 44 (2009): 127–131.

12

E. A. Kvittingen et al., “Self-Induced Correction of the Genetic Defect in Tyrosinemia Type I”, Journal of Clinical Investigation 94 (1994): 1657–1661.

13

K. A. Choate et al., “Mitotic Recombination in Patients with Ichthyosis Causes Reversion of Dominant Mutations in KRT10”, Science 330 (2010): 94–97.

14

J. Lederberg, “’Ome Sweet ’Omics – A Genealogical Treasury of Words”, Scientist, April 2, 2001.

15

Òàêîå ñîîòâåòñòâèå íàçûâàåòñÿ êîìïëåìåíòàðíîñòüþ, à ïðàâèëî, ïî êîòîðûì îäíî àçîòèñòîå îñíîâàíèå ñòàíîâèòñÿ íàïðîòèâ äðóãîãî, íàçûâàþò ïðàâèëîì (èëè ïðèíöèïîì) êîìïëåìåíòàðíîñòè.

16

Çäåñü íå óêàçàí åùå îäèí ïðîöåññ – îáðàòíàÿ òðàíñêðèïöèÿ.  õîäå ýòîãî ïðîöåññà ïî èíôîðìàöèè ñ ìîëåêóëû ÐÍÊ ñ ïîìîùüþ ôåðìåíòà îáðàòíîé òðàíñêðèïòàçû (ðåâåðòàçû) ñòðîèòñÿ ìîëåêóëà ÄÍÊ. Ñàìûé èçâåñòíûé îáúåêò, èñïîëüçóþùèé îáðàòíóþ òðàíñêðèïöèþ, – âèðóñ èììóíîäåôèöèòà ÷åëîâåêà. Îí âõîäèò â äîâîëüíî êðóïíóþ ãðóïïó ðåòðîâèðóñîâ.  ðåòðîâèðóñàõ åñòü òîëüêî ÐÍÊ, à ÄÍÊ íåò. Ïîñëåäíÿÿ è îáðàçóåòñÿ â õîäå îáðàòíîé òðàíñêðèïöèè, êîãäà ýòè âèðóñû ïîïàäàþò â êëåòêè-æåðòâû.

17

Òîëüêî â çðåëîì ñîñòîÿíèè; ó ìîëîäûõ êëåòîê îíî åñòü, çàòåì óòðà÷èâàåòñÿ.

18

Èññëåäîâàíèå 2018 ãîäà îïðîâåðãàåò ýòîò òåçèñ: Shiyu Luo et al. Biparental Inheritance of Mitochondrial DNA in Humans, PNAS, December 18, 2018, 115 (51), 13039–13044; published ahead of print November 26, 2018. DOI: 10.1073/pnas.1810946115.

19

Ñëåäóåò óòî÷íèòü, ÷òî õîòÿ èçáûòîê àðãèíèíà (êàê è äðóãèõ âåùåñòâ), áåçóñëîâíî, âðåäèò îðãàíèçìó, íî áåç ýòîé àìèíîêèñëîòû íåëüçÿ ïîñòðîèòü áåëêè, òàê ÷òî åå ïîëíîå îòñóòñòâèå åùå áîëåå âðåäîíîñíî.

20

S. Rogers, “Reflections on Issues Posed by Recombinant DNA Molecule Technology. II”, Annals of the New York Academy of Sciences 265 (1976): 66–70.

21

T. Friedmann and R. Roblin, “Gene Therapy for Human Genetic Disease?”, Science 175 (1972): 949–955.

22

T. Friedmann, “Stanfield Rogers: Insights into Virus Vectors and Failure of an Early Gene Therapy Model”, Molecular Therapy 4 (2001): 285–288.

23

 ìàå 2016-ãî Åâðîïåéñêàÿ êîìèññèÿ äàëà ðàçðåøåíèå íà ïðîèçâîäñòâî è èñïîëüçîâàíèå ñòðèìâåëèñà, îäíàêî ê ìàðòó 2018-ãî áûëî ïðîäàíî âñåãî ïÿòü êóðñîâ ïðåïàðàòà, ÷òî è íåóäèâèòåëüíî: çà ãîä â ÅÑ âûÿâëÿåòñÿ ëèøü 15 ñëó÷àåâ ÒÊÈÄ ñ íåäîñòàòî÷íîñòüþ àäåíîçèíäåçàìèíàçû, ïðè ýòîì ñòîèìîñòü ïðåïàðàòà – 594 òûñÿ÷è åâðî.

24

Ñëîâî “ôèëîñîôèÿ” ïðèñóòñòâóåò â ýòîì íàçâàíèè èñòîðè÷åñêè, à ñàìà ñòåïåíü ïðèñóæäàåòñÿ ïðàêòè÷åñêè âî âñåõ íàó÷íûõ îáëàñòÿõ (ïðèìå÷. íàó÷. ðåä.).

25

Ïîñòäîê, èëè ïîñòäîêòîðàíò, – ó÷åíûé, íåäàâíî ïîëó÷èâøèé ñòåïåíü äîêòîðà ôèëîñîôèè (Ph. D.) è âûïîëíÿþùèé íîâóþ, áîëåå ñëîæíóþ íàó÷íóþ ðàáîòó.  ïîñòäîêòîðàíòóðó íàáèðàþò ïî êîíêóðñó è íà íåïðîäîëæèòåëüíîå âðåìÿ, íàïðèìåð 2–3 ãîäà.  ñèñòåìå íàó÷íûõ äîëæíîñòåé ñòðàí áûâøåãî ÑÑÑÐ, ïåðåíÿòîé îò Ñîþçà, àíàëîãà ïîñòäîêîâ íåò. Íàèáîëåå áëèçêàÿ ê íèì êàòåãîðèÿ â ðîññèéñêèõ ðåàëèÿõ – “ìîëîäîé ó÷åíûé”, ò. å. ÷åëîâåê äî 35 ëåò, ïîëó÷èâøèé ñòåïåíü êàíäèäàòà íàóê.

26

K. R. Folger et al., “Patterns of Integration of DNA Microinjected into Cultured Mammalian Cells: Evidence for Homologous Recombination Between Injected Plasmid DNA Molecules”, Molecular and Cellular Biology 2 (1982): 1372–1387.

27

Çäåñü îïèñûâàþòñÿ êîíúþãàöèÿ è êðîññèíãîâåð âî âðåìÿ ïåðâîãî äåëåíèÿ ìåéîçà.  ðåçóëüòàòå ýòîãî äåëåíèÿ èç îäíîé êëåòêè ñ äâîéíûì íàáîðîì õðîìîñîì ïîëó÷àåòñÿ äâå êëåòêè, êàæäàÿ ñ îäèíàðíûì íàáîðîì õðîìîñîì.

28

Òàì æå.

29

O. Smithies et al., “Insertion of DNA Sequences into the Human Chromosomal Beta-Globin Locus by Homologous Recombination”, Nature 317 (1985): 230–234.

30

K. R. Thomas, K. R. Folger, and M. R. Capecchi, “High Frequency Targeting of Genes to Specific Sites in the Mammalian Genome”, Cell 44 (1986): 419–428.

31

S. L. Mansour, K. R. Thomas, and M. R. Capecchi, “Disruption of the Proto-Oncogene Int-2 in Mouse Embryo-Derived Stem Cells: A General Strategy for Targeting Mutations to Non-Selectable Genes”, Nature 336 (1988): 348–352.

32

J. Lyon and Peter Gorner, Altered Fates: Gene Therapy and the Retooling of Human Life (New York: Norton, 1995), 556.

33

J. W. Szostak et al., “The Double-Strand-Break Repair Model for Recombination”, Cell 33 (1983): 25–35.

34

Sce â íàçâàíèè ôåðìåíòà óêàçûâàåò íà îðãàíèçì, èç êîòîðîãî äàííûé áåëîê áûë âïåðâûå ïîëó÷åí. Ýòî ñîêðàùåíèå îò Saccharomyces cerevisiae, ëàòèíñêîãî íàçâàíèÿ äðîææåé.

35

P. Rouet, F. Smih, and M. Jasin, “Introduction of Double-Strand Breaks into the Genome of Mouse Cells by Expression of a Rare-Cutting Endonuclease”, Molecular and Cellular Biology 14 (1994): 8096–8106.

36

Y. G. Kim, J. Cha, and S. Chandrasegaran, “Hybrid Restriction Enzymes: Zinc Finger Fusions to Fok I Cleavage Domain”, Proceedings of the National Academy of Sciences of the United States of America 93 (1996): 1156–1160.

37

M. Bibikova et al., “Stimulation of Homologous Recombination Through Targeted Cleavage by Chimeric Nucleases”, Molecular and Cellular Biology 21 (2001): 289–297.

38

M. Bibikova et al., “Targeted Chromosomal Cleavage and Mutagenesis in Drosophila Using Zinc-Finger Nucleases”, Genetics 161 (2002): 1169–1175.

39

M. H. Porteus and D. Baltimore, “Chimeric Nucleases Stimulate Gene Targeting in Human Cells”, Science 300 (2003): 763.

40

F. D. Urnov et al., “Highly Efficient Endogenous Human Gene Correction Using Designed Zinc-Finger Nucleases”, Nature 435 (2005): 646–651.

41

S. Chandrasegaran and D. Carroll, “Origins of Programmable Nucleases for Genome Engineering”, Journal of Molecular Biology 428 (2016): 963–989.

42

Åñëè òî÷íåå, ïðåìèþ ×åêó äàëè çà îáíàðóæåíèå àâòîêàòàëèòè÷åñêèõ ñâîéñòâ ðèáîçèìîâ – òî åñòü íå òîëüêî èõ ñïîñîáíîñòè ê ñïëàéñèíãó (ñøèâàíèþ ôðàãìåíòîâ) ñàìèõ ñåáÿ, íî è èõ ñïîñîáíîñòè ê ðàçðåçàíèþ ñàìèõ ñåáÿ.

43

Crisper – âûäâèæíîé êîíòåéíåð â õîëîäèëüíèêå äëÿ õðàíåíèÿ ôðóêòîâ è îâîùåé.

44

 îðèãèíàëå – senile felines.

45

G. W. Tyson and J. F. Banfield, “Rapidly Evolving CRISPRs Implicated in Acquired Resistance of Microorganisms to Viruses”, Environmental Microbiology 10 (2008): 200–207.

46

F. J. Mojica et al., “Biological Significance of a Family of Regularly Spaced Repeats in the Genomes of Archaea, Bacteria and Mitochondria”, Molecular Microbiology 36 (2000): 244–246.

47

F. J. Mojica et al., “Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements”, Journal of Molecular Evolution 60 (2005): 174–182; C. Pourcel, G. Salvignol, and G. Vergnaud, “CRISPR Elements in Yersinia pestis Acquire New Repeats by Preferential Uptake of Bacteriophage DNA, and Provide Additional Tools for Evolutionary Studies”, Microbiology 151 (2005): 653–663; A. Bolotin et al., “Clustered Regularly Interspaced Short Palindrome Repeats (CRISPRs) Have Spacers of Extrachromosomal Origin”, Microbiology 151 (2005): 251–261.

48

A. F. Andersson and J. F. Banfield, “Virus Population Dynamics and Acquired Virus Resistance in Natural Microbial Communities”, Science 320 (2008): 1047–1050.

49

K. S. Makarova et al., “A Putative RNA-Interference-Based Immune System in Prokaryotes: Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of Action”, Biology Direct 1 (2006): 7.

50

D. H. Duckworth, “Who Discovered Bacteriophage?”, Bacteriological Reviews 40 (1976): 793–802.

51

Èíñòèòóò áàêòåðèîôàãîâ â Òáèëèñè îñíîâàë Ãåîðãèé Ãðèãîðüåâè÷ Ýëèàâà â 1923 ãîäó. Ä’Ýðåëëü ïðèåõàë òóäà çíà÷èòåëüíî ïîçæå – â 1934-ì. Òåì íå ìåíåå â 1923-ì äâîå ó÷åíûõ óæå áûëè çíàêîìû.

52

C. Zimmer, A Planet of Viruses. Chicago: University of Chicago Press, 2011. Êíèãà ïåðåâåäåíà íà ðóññêèé: Êàðë Öèììåð. Ïëàíåòà âèðóñîâ / Ïåð. À. Ðàíãóëîâà. Ðîñòîâ-íà-Äîíó: Ôåíèêñ, 2012.

53

G. Naik, “To Fight Growing Threat from Germs, Scientists Try Old-fashioned Killer”, Wall Street Journal, January 22, 2016.

54

G. P. C. Salmond and P. C. Fineran, “A Century of the Phage: Past, Present and Future”, Nature Reviews Microbiology 13 (2015): 777–786.

55

F. Rohwer et al., Life in Our Phage World (San Diego: Wholon, 2014).

56

Äàóäíà, âåðîÿòíåå âñåãî, îïèñûâàåò ñòðîåíèå ôàãà ëÿìáäà, ãåíîì êîòîðîãî ïðåäñòàâëåí ìîëåêóëîé ÄÍÊ. Îäíàêî áàêòåðèîôàãè âìåñòî ÄÍÊ ìîãóò ñîäåðæàòü è ÐÍÊ, ÷òî â òåêñòå íå óêàçàíî.

57

S. J. Labrie, J. E. Samson, and S. Moineau, “Bacteriophage Resistance Mechanisms”, Nature Reviews Microbiology 8 (2010): 317–327.

58

R. Jansen et al., “Identification of Genes That Are Associated with DNA Repeats in Prokaryotes”, Molecular Microbiology 43 (2002): 1565–1575.

59

Y. Ishino et al., “Nucleotide Sequence of the Iap Gene, Responsible for Alkaline Phosphatase Isozyme Conversion in Escherichia coli, and Identification of the Gene Product”, Journal of Bacteriology 169 (1987): 5429–5433.

60

R. Barrangou et al., “CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes”, Science 315 (2007): 1709–1712.

61

A. Bolotin et al., “Complete Sequence and Comparative Genome Analysis of the Dairy Bacterium Streptococcus thermophilus”, Nature Biotechnology 22 (2004): 1554–1558.

62

M. B. MarcÓ, S. Moineau, and A. Quiberoni, “Bacteriophages and Dairy Fermentations”, Bacteriophage 2 (2012): 149–158.

63

S. J. J. Brouns et al., “Small CRISPR RNAs Guide Antiviral Defense in Prokaryotes”, Science 321 (2008): 960–964.

64

T.-H. Tang et al., “Identification of Novel Non-Coding RNAs as Potential Antisense Regulators in the Archaeon Sulfolobus solfataricus”, Molecular Microbiology 55 (2005): 469–481.

65

Íî ýòî ïðîèñõîäèò ãîðàçäî ðåæå, ÷åì â ñëó÷àå ÄÍÊ, èç-çà ðàçíèöû â ñàõàðàõ.  êàæäîì íóêëåîòèäå ÐÍÊ ñîäåðæèòñÿ ñàõàð ðèáîçà, è ó íåå ïî ñðàâíåíèþ ñ äåçîêñèðèáîçîé ÄÍÊ îäèí àòîì êèñëîðîäà “ëèøíèé”. Èìåííî îí çàòðóäíÿåò îáðàçîâàíèå äâîéíûõ ñïèðàëåé ÐÍÊ.

66

L. A. Marraffini and E. J. Sontheimer, “CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA”, Science 322 (2008): 1843–1845.

67

B. Wiedenheft et al., “Structural Basis for DNase Activity of a Conserved Protein Implicated in CRISPR-Mediated Genome Defense”, Structure 17 (2009): 904–912.

68

R. E. Haurwitz et al., “Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease”, Science 329 (2010): 1355–1358.

69

J. E. Garneau et al., “The CRISPR/Cas Bacterial Immune System Cleaves Bacteriophage and Plasmid DNA”, Nature 468 (2010): 67–71.

70

R. Sapranauskas et al., “The Streptococcus thermophilus CRISPR/Cas System Provides Immunity in Escherichia coli”, Nucleic Acids Research 39 (2011): 9275–9282.

71

B. Wiedenheft et al., “Structures of the RNA-Guided Surveillance Complex from a Bacterial Immune System”, Nature 477 (2011): 486–489.

72

T. Sinkunas et al., “In Vitro Reconstitution of Cascade-Mediated CRISPR Immunity in Streptococcus thermophilus”, EMBO Journal 32 (2013): 385–394.

73

D. H. Haft et al., “A Guild of 45 CRISPR-Associated (Cas) Protein Families and Multiple CRISPR/Cas Subtypes Exist in Prokaryotic Genomes”, PLoS Computational Biology 1 (2005): e60.

74

K. S. Makarova et al., “Evolution and Classification of the CRISPR-Cas Systems”, Nature Reviews Microbiology 9 (2011): 467–477.

75

K. S. Makarova et al., “An Updated Evolutionary Classification of CRISPR-Cas Systems”, Nature Reviews Microbiology 13 (2015): 722–736; S. Shmakov et al., “Discovery and functional Characterization of Diverse Class 2 CRISPR-Cas Systems”, Molecular Cell 60 (2015): 385–397.

76

E. Deltcheva et al., “CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III”, Nature 471 (2011): 602–607.

77

A. P. Ralph and J. R. Carapetis, “Group A Streptococcal Diseases and Their Global Burden”, Current Topics in Microbiology and Immunology 368 (2013): 1–27.

78

M. Jinek et al., “A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity”, Science 337 (2012): 816–821.

79

G. Gasiunas et al., “Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage for Adaptive Immunity in Bacteria”, Proceedings of the National Academy of Sciences of the United States of America 109 (2012): 86.

80

Òî åñòü ïðèáëèæåí ïî ñòðóêòóðå ê ãåíàì ÷åëîâåêà.

81

Òî åñòü àòàêóþùåé òó æå ìèøåíü.

82

L. Cong et al., “Multiplex Genome Engineering Using CRISPR/Cas Systems”, Science 339 (2013): 819–823; P. Mali et al., “RNA-guided Human Genome Engineering via Cas9”, Science 339 (2013): 823–826; M. Jinek et al., “RNA-programmed Genome Editing in Human Cells”, eLife 2 (2013): e00471; W. Y. Hwang et al., “Efficient Genome Editing in Zebrafish Using a CRISPR-Cas System”, Nature Biotechnology 31 (2013): 227–229; S. W. Cho, S. Kim, J. M. Kim and J.-S. Kim, “Targeted Genome Engineering in Human Cells with the Cas9 RNA-guided Endonuclease”, Nature Biotechnology 31 (2013): 230–232; W. Jiang et al., “RNA-guided Editing of Bacterial Genomes Using CRISPR-Cas Systems”, Nature Biotechnology 31 (2013): 233–239.

83

H. Wang et al., “One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering”, Cell 153 (2013): 910–918.

84

Ñêðåùèâàíèå ïîòîìêîâ ñ ïðåäñòàâèòåëÿìè ðîäèòåëüñêîãî ïîêîëåíèÿ.

85

Ýòî ëèøü îñíîâíûå, ñóùåñòâóåò åùå íåñêîëüêî àìèíîêèñëîò, êîäèðóåìûõ ìÐÍÊ ó ðàçëè÷íûõ îðãàíèçìîâ.

86

S.-T. Yen et al., “Somatic Mosaicism and Allele Complexity Induced by CRISPR/Cas9 RNA Injections in Mouse Zygotes”, Developmental Biology 393 (2014): 3–9.

87

G. A. Sunagawa et al., “Mammalian Reverse Genetics Without Crossing Reveals Nr3a as a Short-Sleeper Gene”, Cell Reports 14 (2016): 662–677.

88

Gasiunas et al., “Cas9-crRNA Ribonucleoprotein Complex Mediates Specific DNA Cleavage.”

89

L. S. Qi et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression”, Cell 152 (2013): 1173–1183; L. A. Gilbert et al., “CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes”, Cell 154 (2013): 442–451.

90

 íàñòîÿùåå âðåìÿ âûäåëÿþò îêîëî 20 000 ÷åëîâå÷åñêèõ ãåíîâ.

91

M. Herper, “This Protein Could Change Biotech Forever”, Forbes, March 19, 2013, www.forbes.com/sites/matthewherper/2013/03/19/the-protein-that-could-change-biotech-forever/#7001200f473b.

92

H. Ledford, “CRISPR: Gene Editing Is Just the Beginning”, Nature News, March 7, 2016.

93

K. Loria, “The Process Used to Edit the Genes of Human Embryos Is So Easy You Could Do It in a Community Bio-Hacker Space”, Business Insider, May 1, 2015.

94

J. Zayner, “DIY CRISPR Kits, Learn Modern Science by Doing”, www.indiegogo.com/projects/diy-CRISPR-kits-learn-modern-science-by-doing#/.

95

E. Callaway, “Tapping Genetics for Better Beer”, Nature 535 (2016): 484–486.

96

Ðàçóìååòñÿ, ðàêîîáðàçíûå – áåñïîçâîíî÷íûå. Òóò èìååòñÿ â âèäó èõ âíåøíèé ñêåëåò (ïðèìå÷. íàó÷. ðåä.).

97

P. Piffanelli et al., “A Barley Cultivation-Associated Polymorphism Conveys Resistance to Powdery Mildew”, Nature 430 (2004): 887–891.

98

N. V. Federoff and N. M. Brown, Mendel in the Kitchen: A Scientist’s View of Genetically Modified Foods (Washington, DC: Joseph Henry Press, 2004), 54.

99

J. H. JØrgensen, “Discovery, Characterization and Exploitation of Mlo Powdery Mildew Resistance in Barley”, Euphytica 63 (1992): 141–152.

100

R. BÜschges et al., “The Barley Mlo Gene: A Novel Control Element of Plant Pathogen Resistance”, Cell 88 (1997): 695–705.

101

W. Jiang et al., “Demonstration of CRISPR/Cas9/sgRNA-Mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice”, Nucleic Acids Research 41 (2013): e188; N. M. Butler et al., “Generation and Inheritance of Targeted Mutations in Potato (Solanum Tuberosum L.) Using the CRISPR/Cas System”, PLoS ONE 10 (2015): e0144591; S. S. Hall, “Editing the Mushroom”, Scientific American 314 (2016): 56–63.

102

H. Jia and N. Wang, “Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA”, PLoS ONE 9 (2014): e93806.

103

S. Nealon, “Uncoding a Citrus Tree Killer”, UCR Today, February 9, 2016.

104

D. Cyranoski, “CRISPR Tweak May Help Gene-Edited Crops Bypass Biosafety Regulation”, Nature News, October 19, 2015.

105

A. Chaparro-Garcia, S. Kamoun, and V. Nekrasov, “Boosting Plant Immunity with CRISPR/Cas”, Genome Biology 16 (2015): 254–257.

106

W. Haun et al., “Improved Soybean Oil Quality by Targeted Mutagenesis of the Fatty Acid Desaturase 2 Gene Family”, Plant Biotechnology Journal 12 (2014): 934–940.

107

 õîäå èõ ðåàêöèè ñ àñïàðàãèíîì – àìèíîêèñëîòîé, âõîäÿùåé â ñîñòàâ áåëêîâ (à çíà÷èò, è ïèùè).

108

B. M. Clasen et al., “Improving Cold Storage and Processing Traits in Potato Through Targeted Gene Knockout”, Plant Biotechnology Journal 14 (2016): 169–176.

109

United States Department of Agriculture, “Glossary of Agricultural Biotechnology Terms”, last modified February 27, 2013, www.usda.gov/wps/portal/usda/usdahome?navid=BIOTECH_GLOSS&navtype=RT&parentnav=BIOTECH.

110

USDA Economic Research Service, “Adoption of Genetically Engineered Crops in the U. S.”, last modified July 14, 2016, www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us.aspx.

111

Pew Research Center, “Eating Genetically Modified Foods”, www.pewinternet.org./2015/01/29/public-and-scientists-views-on-science-and-society/pi_2015-01-29_science-and-society-03–02/

112

J. W. Woo et al., “DNA-Free Genome Editing in Plants with Preassembled CRISPR-Cas9 Ribonucleoproteins”, Nature Biotechnology 33 (2015): 1162–1164.

113

“Breeding Controls”, Nature 532 (2016): 147.

114

H. Ledford, “Gene-Editing Surges as US Rethinks Regulations”, Nature News, April 12, 2016.

115

A. Regalado, “DuPont Predicts CRISPR Plants on Dinner Plates in Five Years”, MIT Technology Review, October 8, 2015.

116

E. Waltz, “A Face-Lift for Biotech Rules Begins”, Nature Biotechnology 33 (2015): 1221–1222.

117

M. C. Jalonick, “Obama Signs Bill Requiring Labeling of GMO Foods”, Washington Post, July 29, 2016.

118

C. Harrison, “Going Swimmingly: AquaBounty’s GM Salmon Approved for Consumption After 19 Years”, SynBioBeta, November 23, 2015, http://synbiobeta.com/news/aquabounty-gm-salmon/.

119

A. Pollack, “Genetically Engineered Salmon Approved for Consumption”, New York Times, November 19, 2015.

120

Óãëåðîäíûé ñëåä – ýòî ñîâîêóïíîñòü âñåõ âûáðîñîâ ïàðíèêîâûõ ãàçîâ, âîçíèêøèõ ïðÿìî è êîñâåííî ïðè ïðîèçâîäñòâå ïðîäóêòà. Íàïðèìåð, â óãëåðîäíûé ñëåä âûðàùèâàåìîãî ëîñîñÿ âîéäóò â òîì ÷èñëå è âûáðîñû äâèãàòåëÿ àâòîìîáèëÿ, ïîäâîçèâøåãî êîðì ê ëîñîñåâîé ôåðìå (ïðèìå÷. íàó÷. ðåä.).

121

W. Saletan, “Don’t Fear the Frankenfish”, Slate, November 20, 2015, www.slate.com/articles/health_and_science/science/2015/11/genetically_engineered_aquabounty_salmon_safe_fda_decides.html .

122

A. Kopicki, “Strong Support for Labeling Modified Foods”, New York Times, July 27, 2013.

123

Friends of the Earth, “FDA’s Approval of GMO Salmon Denounced”, www.foe.orgfdas-approval-of-gmo-salmon-denounced/news/news-releases/2015-11-.

124

K. Saeki et al., “Functional Expression of a Delta12 Fatty Acid Desaturase Gene from Spinach in Transgenic Pigs”, Proceedings of the National Academy of Sciences of the United States of America 101 (2004): 6361–6666.

125

S. P. Golovan et al., “Pigs Expressing Salivary Phytase Produce Low-Phosphorus Manure”, Nature Biotechnology 19 (2001): 741–745.

126

C. Perkel, “University of Guelph ‘Enviropigs’ Put Down, Critics Blast ‘Callous’ Killing”, Huffington Post Canada, June 21, 2012.

127

R. Kambadur et al., “Mutations in Myostatin (GDF8) in Double-Muscled Belgian Blue and Piedmontese Cattle”, Genome Research 7 (1997): 910–916.

128

A. C. McPherron, A. M. Lawler, and S. J. Lee, “Regulation of Skeletal Muscle Mass in Mice by a New TGF-β Superfamily Member”, Nature 387 (1997): 83–90.

129

A. Clop et al., “A Mutation Creating a Potential Illegitimate microRNA Target Site in the Myostatin Gene Affects Muscularity in Sheep”, Nature Genetics 38 (2006): 813–818.

130

D. S. Mosher et al., “A Mutation in the Myostatin Gene Increases Muscle Mass and Enhances Racing Performance in Heterozygote Dogs”, PLoS Genetics 3 (2007): e79.

131

M. Schuelke et al., “Myostatin Mutation Associated with Gross Muscle Hypertrophy in a Child”, New England Journal of Medicine 350 (2004): 2682–2688.

132

E. P. Zehr, “The Man of Steel, Myostatin, and Super Strength”, Scientific American, June 14, 2013.

133

L. Qian et al., “Targeted Mutations in Myostatin by Zinc-Finger Nucleases Result in Double-Muscled Phenotype in Meishan Pigs”, Scientific Reports 5 (2015): 14435.

134

X. Wang et al., “Generation of Gene-Modified Goats Targeting MSTN and FGF5 via Zygote Injection of CRISPR/Cas9 System”, Scientific Reports 5 (2015): 13878.

135

S. Reardon, “Welcome to the CRISPR Zoo”, Nature News, March 9, 2016.

136

A. Harmon, “Open Season Is Seen in Gene Editing of Animals”, New York Times, November 26, 2015.

137

C. Whitelaw et al., “Genetically Engineering Milk”, Journal of Dairy Research 83 (2016): 3–11.

138

D. J. Holtkamp et al., “Assessment of the Economic Impact of Porcine Reproductive and Respiratory Syndrome Virus on United States Pork Producers”, Journal of Swine Health and Production 21 (2013): 72–84.

139

K. M. Whitworth et al., “Use of the CRISPR/Cas9 System to Produce Genetically Engineered Pigs from In Vitro-Derived Oocytes and Embryos”, Biology of Reproduction 91 (2014): 1–13.

140

K. M. Whitworth et al., “Gene-Edited Pigs Are Protected from Porcine Reproductive and Respiratory Syndrome Virus”, Nature Biotechnology 34 (2016): 20–22.

141

Center for Food Security and Public Health, “African Swine Fever”, www.cfsph.iastate.edu/Factsheets/pdfs/african_swine_fever.pdf.

142

C. J. Palgrave et al., “Species-Specific Variation in RELA Underlies Differences in NF-κB Activity: A Potential Role in African Swine Fever Pathogenesis”, Journal of Virology 85 (2011): 6008–6014.

143

S. G. Lillico et al., “Mammalian Interspecies Substitution of Immune Modulatory Alleles by Genome Editing”, Scientific Reports 6 (2016): 21645.

144

H. Devlin, “Could These Piglets Become Britain’s First Commercially Viable GM Animals?”, Guardian, June 23, 2015.

145

B. Graf and M. Senn, “Behavioural and Physiological Responses of Calves to Dehorning by Heat Cauterization with or Without Local Anaesthesia”, Applied Animal Behaviour Science 62 (1999): 153–171.

146

I. Medugorac et al., “Bovine Polledness – an Autosomal Dominant Trait with Allelic Heterogeneity”, PLoS ONE 7 (2012): e39477.

147

D. F. Carlson et al., “Production of Hornless Dairy Cattle from Genome-Edited Cell Lines”, Nature Biotechnology 34 (2016): 479–481.

148

K. Grens, “GM Calves Move to University”, Scientist, December 21, 2015.

149

N. Rosenthal and Steve Brown, “The Mouse Ascending: Perspectives for Human-Disease Models”, Nature Cell Biology 9 (2007): 993–999; www.findmice.org/repository.

150

B. Shen et al., “Generation of Gene-Modified Cynomolgus Monkey via Cas9/RNA-Mediated Gene Targeting in One-Cell Embryos”, Cell 156 (2014): 836–843.

151

H. Wan et al., “One-Step Generation of p53 Gene Biallelic Mutant Cynomolgus Monkey via the CRISPR/Cas System”, Cell Research 25 (2015): 258–261.

152

Y. Chen et al., “Functional Disruption of the Dystrophin Gene in Rhesus Monkey Using CRISPR/Cas9”, Human Molecular Genetics 24 (2015): 3764–3774.

153

Z. Tu et al., “CRISPR/Cas9: A Powerful Genetic Engineering Tool for Establishing Large Animal Models of Neurodegenerative Diseases”, Molecular Neurodegeneration 10 (2015): 35–42; Z. Liu et al., “Generation of a Monkey with MECP2 Mutations by TALEN-Based Gene Targeting”, Neuroscience Bulletin 30 (2014): 381–386.

154

C. Sheridan, “FDA Approves ‘Farmaceutical’ Drug from Transgenic Chickens”, Nature Biotechnology 34 (2016): 117–119.

155

L. R. Bertolini et al., “The Transgenic Animal Platform for Biopharmaceutical Production”, Transgenic Research 25 (2016): 329–343.

156

J. Peng et al., “Production of Human Albumin in Pigs Through CRISPR/Cas9-Mediated Knockin of Human cDNA into Swine Albumin Locus in the Zygotes”, Scientific Reports 5 (2015): 16705.

157

D. Cooper et al., “The Role of Genetically Engineered Pigs in Xenotransplantation Research”, Journal of Pathology 238 (2016): 288–299.

158

U. S. Department of Health and Human Services, “The Need Is Real: Data”, www.organdonor.gov/about/data.html.

159

L. Yang et al., “Genome-Wide Inactivation of Porcine Endogenous Retroviruses (PERVs)”, Science 350 (2015): 1101–1104.

160

A. Regalado, “Surgeons Smash Records with Pig-to-Primate Organ Transplants”, MIT Technology Review, August 12, 2015.

161

D. Cyranoski, “Gene-Edited ‘Micropigs’ to Be Sold as Pets at Chinese Institute”, Nature News, September 29, 2015.

162

X. Wang et al., “One-Step Generation of Triple Gene-Targeted Pigs Using CRISPR/Cas9 System”, Scientific Reports 6 (2016): 20620.

163

Cyranoski, “Gene-Edited ‘Micropigs.’

164

C. Maldarelli, “Although Purebred Dogs Can Be Best in Show, Are They Worst in Health?”, Scientific American, February 21, 2014.

165

Q. Zou et al., “Generation of Gene-Target Dogs Using CRISPR/Cas9 System”, Journal of Molecular Cell Biology 7 (2015): 580–583.

166

A. Regalado, “First Gene-Edited Dogs Reported in China”, MIT Technology Review, October 19, 2015.

167

A. Martin et al., “CRISPR/Cas9 Mutagenesis Reveals Versatile Roles of Hox Genes in Crustacean Limb Specification and Evolution”, Current Biology 26 (2016): 14–26.

168

M. Evans, “Could Scientists Create Dragons Using CRISPR Gene Editing?”, BBC News, January 3, 2016.

169

R. A. Charo and H. T. Greely, “CRISPR Critters and CRISPR Cracks”, American Journal of Bioethics 15 (2015): 11–17.

170

B. Switek, “How to Resurrect Lost Species”, National Geographic News, March 11, 2013; S. Blakeslee, “Scientists Hope to Bring a Galápagos Tortoise Species Back to Life”, New York Times, December 14, 2015.

171

J. Folch et al., “First Birth of an Animal from an Extinct Subspecies (Capra pyrenaica pyrenaica) by Cloning”, Theriogenology 71 (2009): 1026–1034.

172

Îäèí èç èñêîïàåìûõ âèäîâ ìàìîíòà, Mammuthus primigenius (ïðèìå÷. íàó÷. ðåä.).

173

K. Loria and D. Baer, “Korea’s Radical Cloning Lab Told Us About Its Breathtaking Plan to Bring Back the Mammoth”, Tech Insider, September 10, 2015.

174

V. J. Lynch et al., “Elephantid Genomes Reveal the Molecular Bases of Woolly Mammoth Adaptations to the Arctic”, Cell Reports 12 (2015): 217–228.

175

J. Leake, “Science Close to Creating a Mammoth”, Sunday Times, March 22, 2015.

176

B. Shapiro, “Mammoth 2.0: Will Genome Engineering Resurrect Extinct Species?”, Genome Biology 16 (2015): 228–230.

177

Òóíäðà – îäèí èç áèîòîïîâ, õðàíÿùèõ è âûäåëÿþùèõ íàèáîëüøåå êîëè÷åñòâî ìåòàíà – îäíîãî èç ïàðíèêîâûõ ãàçîâ. ×òîáû çàìåäëèòü ãëîáàëüíîå ïîòåïëåíèå, íàäî ñíèçèòü âûáðîñû ìåòàíà è äðóãèõ ñîåäèíåíèé óãëåðîäà â àòìîñôåðó. Ïî ãåîëîãè÷åñêèì äàííûì, òóíäðîñòåïè, êîòîðûå âî âðåìåíà ìàìîíòîâ è äðóãèõ ãèãàíòñêèõ ìëåêîïèòàþùèõ ðàñïîëàãàëèñü íà ìåñòå íûíåøíåé òóíäðû, íå òàê “ìåòàíîãåííû” – è, âèäèìî, èìåííî êðóïíûå çâåðè ôîðìèðîâàëè ýòîò ëàíäøàôò. Ðîññèéñêèå ó÷åíûå Ñåðãåé è Íèêèòà Çèìîâ ðàáîòàþò íàä ñîçäàíèåì “Ïàðêà Ïëåéñòîöåíîâîãî ïåðèîäà” – îáøèðíîãî ó÷àñòêà çåìëè íà øèðîòå òóíäðû ñ ôàóíîé, ìàêñèìàëüíî áëèçêîé ê òîé, ÷òî áûëà ïðè ìàìîíòàõ.

178

Long Now Foundation, “What We Do”, http://reviverestore.org/what-we-do/.

179

A. Burt, “Site-Specific Selfish Genes as Tools for the Control and Genetic Engineering of Natural Populations”, Proceedings of the Royal Society of London B 270 (2003): 921–928.

180

K. M. Esvelt et al., “Concerning RNA-Guided Gene Drives for the Alteration of Wild Populations”, eLife 3 (2014): e03401.

181

V. M. Gantz and E. Bier, “The Mutagenic Chain Reaction: A Method for Converting Heterozygous to Homozygous Mutations”, Science 348 (2015): 442–444.

182

V. M. Gantz et al., “Highly Efficient Cas9-Mediated Gene Drive for Population Modification of the Malaria Vector Mosquito Anopheles stephensi”, Proceedings of the National Academy of Sciences of the United States of America 112 (2015): E6736–43.

183

Ïîñêîëüêó “îòðåäàêòèðîâàííûé” êîìàð ïåðåñòàåò áûòü íîñèòåëåì ìàëÿðèéíûõ ïëàçìîäèåâ (ïðèìå÷. íàó÷. ðåä.).

184

A. Hammond et al., “A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito Vector Anopheles gambiae”, Nature Biotechnology 34 (2016): 78–83.

185

L. Alphey et al., “Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis”, Vector Borne and Zoonotic Diseases 10 (2010): 295–311.

186

L. Alvarez, “A Mosquito Solution (More Mosquitoes) Raises Heat in Florida Keys”, New York Times, February 19, 2015.

187

“Gene Intelligence”, Nature 531 (2016): 140.

188

O. S. Akbari et al., “Biosafety: Safeguarding Gene Drive Experiments in the Laboratory”, Science 349 (2015): 927–929.

189

J. E. DiCarlo et al., “Safeguarding CRISPR/Cas9 Gene Drives in Yeast”, Nature Biotechnology 33 (2015): 1250–1255.

190

National Academies of Sciences, Engineering, and Medicine, “Gene Drives on the Horizon: Advancing Science, Navigating Uncertainty, and Aligning Research with Public Values”, http://nas-sites.org/gene-drives/.

191

ETC Group, “Stop the Gene Bomb! ETC Group Comment on NAS Report on Gene Drives”, June 8, 2016, www.etcgroup.org/content/stop-gene-bomb-etc-group-comment-nas-report-gene-drives.

192

A. Burt, “Site-Specific Selfish Genes as Tools for the Control and Genetic Engineering of Natural Populations”, Proceedings of the Royal Society of London B 270 (2003): 921–928.

193

B. J. King, “Are Genetically Engineered Mice the Answer to Combating Lyme Disease?”, NPR, June 16, 2016.

194

American Mosquito Control Association, “Mosquito-Borne Diseases”, www.mosquito.org/mosquito-borne-diseases.

195

J. Fang, “Ecology: A World Without Mosquitoes”, Nature 466 (2010): 432–434.

196

Ýòè òðè êîìïàíèè – Editas Medicine, Intellia Therapeutics è CRISPR Therapeutics.

197

S. Reardon, “First CRISPR Clinical Trial Gets Green Light from US Panel”, Nature News, June 22, 2016.

198

Y. Anwar, “UC Berkeley to Partner in $ 600M Chan Zuckerberg Science ‘Biohub,’” Berkeley News, September 21, 2016.

199

R. Sanders, “New DNA-Editing Technology Spawns Bold UC Initiative”, Berkeley News, March 18, 2014.

200

Y. Wu et al., “Correction of a Genetic Disease in Mouse via Use of CRISPR-Cas9”, Cell Stem Cell 13 (2013): 659–662.

201

K. Allers and T. Schneider, “CCR5Δ32 Mutation and HIV Infection: Basis for Curative HIV Therapy”, Current Opinion in Virology 14 (2015): 24–29.

202

S. G. Deeks and J. M. McCune, “Can HIV Be Cured with Stem Cell Therapy?”, Nature Biotechnology 28 (2010): 807–810.

203

W. G. Glass et al., “CCR5 Deficiency Increases Risk of Symptomatic West Nile Virus Infection”, Journal of Experimental Medicine 203 (2006): 35–40.

204

P. Tebas et al., “Gene Editing of CCR5 in Autologous CD4 T Cells of Persons Infected with HIV”, New England Journal of Medicine 370 (2014): 901–910.

205

Òàì æå.

206

N. Wade, “Gene Editing Offers Hope for Treating Duchenne Muscular Dystrophy, Studies Find”, New York Times, December 31, 2015.

207

H. Yin et al., “Therapeutic Genome Editing by Combined Viral and Non-Viral Delivery of CRISPR System Components in Vivo”, Nature Biotechnology 34 (2016): 328–333.

208

X. Chen and M. A. F. V. GonÇalves, “Engineered Viruses as Genome Editing Devices”, Molecular Therapy 24 (2015): 447–457.

209

American Cancer Society, Cancer Facts and Figures 2016 (Atlanta: American Cancer Society, 2016).

210

D. Heckl et al., “Generation of Mouse Models of Myeloid Malignancy with Combinatorial Genetic Lesions Using CRISPR-Cas9 Genome Editing”, Nature Biotechnology 32 (2014): 941–946.

211

 ðàìêàõ ðóññêîÿçû÷íîé ìåäèöèíñêîé òåðìèíîëîãèè ëåéêîç íåëüçÿ íàçûâàòü ðàêîì.  óçêîì ñìûñëå ñëîâà ðàê – ýòî çëîêà÷åñòâåííàÿ îïóõîëü ýïèòåëèàëüíîãî ïðîèñõîæäåíèÿ, à êëåòêè êðîâè ê ýïèòåëèþ íå îòíîñÿòñÿ.

212

T. Wang et al., “Identification and Characterization of Essential Genes in the Human Genome”, Science 350 (2015): 1096–1101.

213

S. Begley, “Medical First: Gene-Editing Tool Used to Treat Girl’s Cancer”, STAT News, November 5, 2015; A. Pollack, “A Cell Therapy Untested in Humans Saves a Baby with Cancer”, New York Times, November 5, 2015.

214

W. Qasim et al., “First Clinical Application of TALEN Engineered Universal CAR19 T Cells in B-ALL”, ñòàòüÿ, ïðåäñòàâëåííàÿ íà åæåãîäíîé âñòðå÷å Àìåðèêàíñêîãî îáùåñòâà ãåìàòîëîãîâ, Îðëàíäî, Ôëîðèäà, 5–8 äåêàáðÿ 2015-ãî.

215

D. Cyranoski, “CRISPR Gene-Editing Tested in a Person for the First Time”, Nature News, November 15, 2016.

216

M. Jinek et al., “A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity”, Science 337 (2012): 816–821.

217

V. Pattanayak et al., “High-Throughput Profiling of Off-Target DNA Cleavage Reveals RNA-Programmed Cas9 Nuclease Specificity”, Nature Biotechnology 31 (2013): 839–843.

218

Y. Fu et al., “High-Frequency Off-Target Mutagenesis Induced by CRISPR-Cas Nucleases in Human Cells”, Nature Biotechnology 31 (2013): 822–826; P. D. Hsu et al., “DNA Targeting Specificity of RNA-Guided Cas9 Nucleases”, Nature Biotechnology 31 (2013): 827–832.

219

F. Urnov, “Genome Editing: The Domestication of Cas9”, Nature 529 (2016): 468–469.

220

B. Shen et al., “Generation of Gene-Modified Cynomolgus Monkey via Cas9/ RNA-Mediated Gene Targeting in One-Cell Embryos”, Cell 156.

221

Ýòî ïðîèçîøëî äîñòàòî÷íî ñêîðî.  êîíöå 2018 ãîäà â Êèòàå ðîäèëèñü ïåðâûå ÷åëîâå÷åñêèå äåòè-áëèçíåöû ñ ãåíîìîì, îòðåäàêòèðîâàííûì ïðè ïîìîùè CRISPR. Öåëüþ áûëî ñäåëàòü èõ íåâîñïðèèì÷èâûìè ê ÂÈ×. Ïîçæå êèòàéñêèå âëàñòè îáúÿâèëè, ÷òî èññëåäîâàíèÿ, ïðîâîäèìûå ãðóïïîé Õå Öçÿíüêóè, áûëè íåñàíêöèîíèðîâàííûìè, à ñàìè ó÷åíûå “óêëîíèëàñü îò êîíòðîëÿ”.  íàñòîÿùåå âðåìÿ äåÿòåëüíîñòü ãðóïïû Öçÿíüêóè ïðåêðàùåíà, à ïðî ðîäèâøèõñÿ äåòåé îáúÿâëåíî, ÷òî îíè “íàõîäÿòñÿ ïîä ïðèñòàëüíûì íàáëþäåíèåì âðà÷åé” (ïðèìå÷. íàó÷. ðåä.).

222

M. W. Nirenberg, “Will Society Be Prepared?”, Science 157 (1967): 633.

223

R. L. Sinsheimer, “The Prospect for Designed Genetic Change”, American Scientist 57 (1969): 134–142.

224

W. F. Anderson, “Genetics and Human Malleability”, Hastings Center Report 20 (1990): 21–24.

225

Ñïðàâåäëèâîñòè ðàäè, ýòî çà÷àñòóþ ïðîèñõîäèò è ïðè ïàðòåíîãåíåçå, âïîëíå åñòåñòâåííûì ïóòåì.

226

G. Stock and J. Campbell, eds., Engineering the Human Germline: An Exploration of the Science and Ethics of Altering the Genes We Pass to Our Children (Oxford: Oxford University Press, 2000).

227

M. S. Frankel and A. R. Chapman, Human Inheritable Genetic Modifications: Assessing Scientific, Ethical, Religious, and Policy Issues (Washington, DC: American Association for the Advancement of Science, 2000).

228

S. Baruch, Human Germline Genetic Modification: Issues and Options for Policymakers (Washington, DC: Genetics and Public Policy Center, 2005).

229

J. Schandera and T. K. Mackey, “Mitochondrial Replacement Techniques: Divergence in Global Policy”, Trends in Genetics 32 (2016): 385–390.

230

S. Reardon, “US Panel Greenlights Creation of Male ‘Three-Person’ Embryos”, Nature News, February 3, 2016.

231

ß âïåðâûå îïèñàëà ýòîò ñîí â èíòåðâüþ Ìàéêëó Ñïåêòåðó, íàïèñàâøåìó îá ýòîì â íîÿáðå 2015-ãî â î÷åðêå “CRISPR” â New Yorker.

232

J. K. Joung, D. F. Voytas, and J. Kamens, “Accelerating Research Through Reagent Repositories: The Genome Editing Example”, Genome Biology 16 (2015): 255–258.

233

Shen, “Generation of Gene-Modified Cynomolgus Monkey.”

234

J. Zayner, “DIY CRISPR Kits, Learn Modern Science by Doing”, www.indiegogo.com/projects/diy-CRISPR-kits-learn-modern-science-by-doing#/.

235

P. Skerrett, “Is Do-It-Yourself CRISPR as Scary as It Sounds?”, STAT News, March 14, 2016.

236

United States Atomic Energy Commission, In the Matter of J. Robert Oppenheimer: Transcript of Hearing Before Personnel Security Board, vol. 2 (Washington, DC: GPO, 1954), www.osti.gov/includes/opennet/includes/Oppenheimer % 20hearings/Vol%20II %20Oppenheimer.pdf.

237

D. A. Jackson, R. H. Symons, and P. Berg, “Biochemical Method for Inserting New Genetic Information into DNA of Simian Virus 40: Circular SV40 DNA Molecules Containing Lambda Phage Genes and the Galactose Operon of Escherichia coli”, Proceedings of the National Academy of Sciences of the United States of America 69 (1972): 2904–2909.

238

P. Berg et al., “Letter: Potential Biohazards of Recombinant DNA Molecules”, Science 185 (1974): 303.

239

Institute of Medicine (US) Committee to Study Decision Making; K. E. Hanna, ed., Biomedical Politics. Washington, DC: National Academies Press, 1991; M. Rogers, Biohazard. New York: Knopf, 1977; P. Berg and M. F. Singer, “The Recombinant DNA Controversy: Twenty Years Later”, Proceedings of the National Academy of Sciences of the United States of America 92 (1995): 9011–9013.

240

P. Berg et al., “Asilomar Conference on Recombinant DNA Molecules”, Science 188 (1975): 991–994.

241

P. Berg, “Meetings That Changed the World: Asilomar 1975: DNA Modification Secured”, Nature 455 (2008): 290–291.

242

“After Asilomar”, Nature 526 (2015): 293–294.

243

S. Jasanoff, J. B. Hurlbut, and K. Saha, “CRISPR Democracy: Gene Editing and the Need for Inclusive Deliberation”, Issues in Science and Technology 32 (2015).

244

J. B. Hurlbut, “Limits of Responsibility: Genome Editing, Asilomar, and the Politics of Deliberation”, Hastings Center Report 45 (2015): 11–14.

245

N. A. Wivel, “Historical Perspectives Pertaining to the NIH Recombinant DNA Advisory Committee”, Human Gene Therapy 25 (2014): 19–24.

246

D. Baltimore et al., “Biotechnology: A Prudent Path Forward for Genomic Engineering and Germline Gene Modification”, Science 348 (2015): 36–38.

247

N. Wade, “Scientists Seek Ban on Method of Editing the Human Genome”, New York Times, March 19, 2015.

248

R. Stein, “Scientists Urge Temporary Moratorium on Human Genome Edits”, All Things Considered, NPR, March 20, 2015; “Scientists Right to Pause for Genetic Editing Discussion”, Boston Globe, March 23, 2015.

249

E. Lanphier et al., “Don’t Edit the Human Germline”, Nature 519 (2015): 410–411.

250

A. Regalado, “Engineering the Perfect Baby”, MIT Technology Review, March 5, 2015.

251

P. Liang et al., “CRISPR/Cas9-Mediated Gene Editing in Human Tripronuclear Zygotes”, Protein and Cell 6 (2015): 363–372.

252

P. Liang et al., “CRISPR/Cas9-Mediated Gene Editing in Human Tripronuclear Zygotes”, Protein and Cell 6 (2015): 363–372.

253

X. Zhai, V. Ng, and R. Lie, “No Ethical Divide Between China and the West in Human Embryo Research”, Developing World Bioethics 16 (2016): 116–120.

254

D. Cyranoski and S. Reardon, “Chinese Scientists Genetically Modify Human Embryos”, Nature News, April 22, 2015.

255

G. Kolata, “Chinese Scientists Edit Genes of Human Embryos, Raising Concerns”, New York Times, April 23, 2015.

256

T. Friedmann et al., “ASGCT and JSGT Joint Position Statement on Human Genomic Editing”, Molecular Therapy 23 (2015): 1282.

257

R. Jaenisch, “A Moratorium on Human Gene Editing to Treat Disease Is Critical”, Time, April 23, 2015.

258

J. Holdren, “A Note on Genome Editing”, May 26, 2015, www.whitehouse.gov/blog/2015/05/26/note-genome-editing.

259

Francis S. Collins, “Statement on NIH Funding of Research Using Gene-Editing Technologies in Human Embryos”, April 29, 2015, www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-nih-funding-research-using-gene-editing-technologies-human-embryos.

260

J. R. Clapper, “Worldwide Threat Assessment of the US Intelligence Community”, February 9, 2016, www.dni.gov/files/documents/SASC_Unclassified_2016_ATA_SFR_FINAL.pdf.

261

J. Savulescu et al., “The Moral Imperative to Continue Gene Editing Research on Human Embryos”, Protein and Cell 6 (2015): 476–479.

262

S. Pinker, “The Moral Imperative for Bioethics”, Boston Globe, August 1, 2015.

263

Hinxton Group, “Statement on Genome Editing Technologies and Human Germline Genetic Modification”, September 3, 2015, www.hinxtongroup.org/Hinxton2015_Statement.pdf.

264

Cyranoski and Reardon, “Chinese Scientists.”

265

D. Cressey, A. Abbott, and H. Ledford, “UK Scientists Apply for License to Edit Genes in Human Embryos”, Nature News, September 18, 2015.

266

Ïîëíûé èõ ñïèñîê ìîæíî íàéòè â ïóáëèêàöèè Íàöèîíàëüíîé àêàäåìèè íàóê, Íàöèîíàëüíîé èíæåíåðíîé àêàäåìèè è Íàöèîíàëüíîé àêàäåìèè ìåäèöèíû ÑØÀ “International Summit on Human Gene Editing”, December 1–3, 2015, www.nationalacademies.org/gene-editing/Gene-Edit-Summit/index.htm.

267

I. Martincorena and P. J. Campbell, “Somatic Mutation in Cancer and Normal Cells”, Science 34 (2015): 1483–1489.

268

M. Porteus, “Therapeutic Genome Editing of Hematopoietic Cells”, ïðåçåíòàöèÿ íà Inserm Workshop 239, CRISPR-Cas9: Breakthroughs and Challenges, Bordeaux, France, April 6–8, 2016.

269

M. Lynch, “Rate, Molecular Spectrum, and Consequences of Human Mutation”, Proceedings of the National Academy of Sciences of the United States of America 107 (2010): 961–968.

270

S. Pinker in P. Skerrett, “Experts Debate: Are We Playing with Fire When We Edit Human Genes?”, STAT News, November 17, 2015.

271

Q. Zhou et al., “Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells In Vitro”, Cell Stem Cell 18 (2016): 330–340; K. Morohaku et al., “Complete In Vitro Generation of Fertile Oocytes from Mouse Primordial Germ Cells”, Proceedings of the National Academy of Sciences of the United States of America 113 (2016): 9021–9026.

272

J. K. Lim et al., “CCR5 Deficiency Is a Risk Factor for Early Clinical Manifestations of West Nile Virus Infection but Not for Viral Transmission”, Journal of Infectious Diseases 201 (2010): 178–185.

273

M. Aidoo et al., “Protective Effects of the Sickle Cell Gene Against Malaria Morbidity and Mortality”, Lancet 359 (2002): 1311–112.

274

E. M. Poolman and A. P. Galvani, “Evaluating Candidate Agents of Selective Pressure for Cystic Fibrosis”, Journal of the Royal Society 4 (2007): 91–98.

275

Òàêèå ñîïðÿæåííûå ñî ñòàð÷åñêèìè äåìåíöèÿìè ìóòàöèè îñòàþòñÿ â ïîïóëÿöèè, ïîñêîëüêó îíè íå ñíèæàþò ÷èñëî ïîòîìêîâ ÷åëîâåêà: â ðåïðîäóêòèâíîì âîçðàñòå ñâÿçàííûå ñ íèìè áîëåçíè åùå íå ïðîÿâëÿþòñÿ.

276

E. S. Lander, “Brave New Genome”, New England Journal of Medicine 373 (2015): 5–8.

277

G. Church, “Should Heritable Gene Editing Be Used on Humans?”, Wall Street Journal, April 10, 2016.

278

C. Funk, B. Kennedy, and E. P. Sciupac, U.S. Public Opinion on the Future Use of Gene Editing. Washington, DC: Pew Research Center, 2016; “Genetic Modifications for Babies”, Pew Research Center, January 28, 2015, www.pewinternet.org/2015/01/29/public-and-scientists-views-on-science-and-society/pi_2015–01–29_science-and-society-03–25.

279

D. Carroll and R. A. Charo, “The Societal Opportunities and Challenges of Genome Editing”, Genome Biology 16 (2015): 242–250.

280

Skerrett, “Experts Debate.”

281

Ãåíåðàëüíàÿ êîíôåðåíöèÿ Îðãàíèçàöèè Îáúåäèíåííûõ Íàöèé ïî âîïðîñàì îáðàçîâàíèÿ, íàóêè è êóëüòóðû (ÞÍÅÑÊÎ), “Âñåîáùàÿ äåêëàðàöèÿ î ãåíîìå ÷åëîâåêà è ïðàâàõ ÷åëîâåêà”, 11 íîÿáðÿ 1997, http://www.un.org/ru/documents/decl_conv/declarations/human_genome.shtml.

282

Ãåíåðàëüíàÿ êîíôåðåíöèÿ Îðãàíèçàöèè Îáúåäèíåííûõ Íàöèé ïî âîïðîñàì îáðàçîâàíèÿ, íàóêè è êóëüòóðû, “Ïåðåîñìûñëåíèå ÷åëîâå÷åñêîãî ãåíîìà è ïðàâ ÷åëîâåêà”, 5 îêòÿáðÿ 2015, https://ru.unesco.org/news/gruppa-ekspertov-yunesko-prizyvaet-vvesti-zapret-na-redaktirovanie-dnk-cheloveka-chtoby.

283

G. Annas, “Viewpoint: Scientists Should Not Edit Genomes of Human Embryos”, April 30, 2015, www.bu.edu/sph/2015/04/30/scientists-should-not-edit-genomes-of-human-embryos/.

284

E. C. Hayden, “Promising Gene Therapies Pose Million-Dollar Conundrum”, Nature News, June 15, 2016; S. H. Orkin and P. Reilly, “Medicine: Paying for Future Success in Gene Therapy”, Science 352 (2016): 1059–1061.

285

T. Shakespeare, “Gene Editing: Heed Disability Views”, Nature 527 (2015): 446.

286

C. J. Epstein, “Is Modern Genetics the New Eugenics?”, Genetics in Medicine 5 (2003): 469–475.

287

E. C. Hayden, “Should You Edit Your Children’s Genes?”, Nature News, February 23, 2016.

288

M. Araki and T. Ishii, “International Regulatory Landscape and Integration of Corrective Genome Editing into In Vitro Fertilization”, Reproductive Biology and Endocrinology 12 (2014): 108–119.

289

R. Isasi, E. Kleiderman, and B. M. Knoppers, “Editing Policy to Fit the Genome?”, Science 351 (2016): 337–339.

290

I. G. Cohen and E. Y. Adashi, “The FDA Is Prohibited from Going Germline”, Science 353 (2016): 545–546.

291

D. B. H. Mathews et al., “CRISPR: A Path Through the Thicket”, Nature 527 (2015): 159–161.

292

A. Regalado, “A Tale of Do-It-Yourself Gene Therapy”, MIT Technology Review, October 14, 2015.

293

G. O. Schaefer, “The Future of Genetic Enhancement Is Not in the West”, Conversation, August 1, 2016.

294

 2018 ãîäó, ñóäÿ ïî âñåìó, îíè æå ïåðâûìè îñóùåñòâèëè ðåäàêòèðîâàíèå ãåíîìîâ êëåòîê ÷åëîâå÷åñêèõ ýìáðèîíîâ, è ýòè äåòè óæå ðîäèëèñü (ñì. ñíîñêó íà ñ. 259).

295

Alliance Vita, “Stop Bébé GM: Une Campagne Citoyenne D’alerte sur CRISPR-Cas9”, www.alliancevita.org/2016/05/stop-bebe-ogm-une-campagne-citoyenne-dalerte-sur-CRISPR-cas9/; P. Knoepfler, “First Anti-CRISPR Political Campaign Is Born in Europe”, The Niche (blog), June 2, 2016, www.ipscell.com/2016/06/first-anti-CRISPR-political-campaign-is-born-in-europe/.

Âåðíóòüñÿ ê ïðîñìîòðó êíèãè Âåðíóòüñÿ ê ïðîñìîòðó êíèãè