Ïðèìå÷àíèÿ êíèãè: ×òî çíà÷èò áûòü ñîáàêîé. È äðóãèå îòêðûòèÿ â îáëàñòè íåéðîáèîëîãèè æèâîòíûõ - ÷èòàòü îíëàéí, áåñïëàòíî. Àâòîð: Ãðåãîðè Áåðíñ

÷èòàòü êíèãè îíëàéí áåñïëàòíî
 
 

Îíëàéí êíèãà - ×òî çíà÷èò áûòü ñîáàêîé. È äðóãèå îòêðûòèÿ â îáëàñòè íåéðîáèîëîãèè æèâîòíûõ

Êàêîâî ýòî – áûòü ñîáàêîé? Ëåòó÷åé ìûøüþ? Äåëüôèíîì? Ìîæåì ëè ìû, ëþäè, ýòî ïîíÿòü? Òåïåðü äà – áëàãîäàðÿ íàó÷íîé ðàáîòå íåéðîáèîëîãà è àâòîðà ïîïóëÿðíûõ êíèã Ãðåãîðè Áåðíñà. Âìåñòå ñî ñâîèìè êîëëåãàìè îí ïðèó÷èë ñîáàê ê òîìîãðàôó, ÷òîáû ïîëó÷èòü âîçìîæíîñòü íàáëþäàòü çà ïðîöåññàìè, ïðîèñõîäÿùèìè â ìîçãå æèâîòíîãî, è ïðîàíàëèçèðîâàòü åãî ìûñëè è îùóùåíèÿ. Íî ñîáàêè – ýòî òîëüêî íà÷àëî. Ãðåãîðè Áåðíñ çíàêîìèò íàñ ñ íîâîñòÿìè èç îáëàñòè íåéðîáèîëîãèè äèêèõ æèâîòíûõ: ìîðñêèå ëüâû ñïîñîáíû óëàâëèâàòü òàíöåâàëüíûé ðèòì, äåëüôèíû âèäÿò ñ ïîìîùüþ çâóêà è äàæå î âûìåðøåì ïî÷òè ñòî ëåò íàçàä ñóì÷àòîì âîëêå ìîæíî ìíîãîå óçíàòü áëàãîäàðÿ íåéðîâèçóàëèçàöèè. Îïèñàííûå Áåðíñîì ðåâîëþöèîííûå íàó÷íûå îòêðûòèÿ äîêàçûâàþò, ÷òî æèâîòíûå èñïûòûâàþò, òå æå ÷óâñòâà, ÷òî è ìû. À çíà÷èò, ÷åëîâåêó ïîðà ïåðåñìîòðåòü ñâîå îòíîøåíèå è ê ñîáàêàì, è ê äðóãèì ñóùåñòâàì.

Ïåðåéòè ê ÷òåíèþ êíèãè ×èòàòü êíèãó « ×òî çíà÷èò áûòü ñîáàêîé. È äðóãèå îòêðûòèÿ â îáëàñòè íåéðîáèîëîãèè æèâîòíûõ »

Ïðèìå÷àíèÿ

1

Ïåð. À. Í. Åãóíîâà.

2

G. Berns, How Dogs Love Us: A Neuroscientist and His Adopted Dog Decode the Canine Brain (New York: New Harvest, 2013).

3

T. Nagel, “What Is It Like to Be a Bat?” Philosophical Review 83 (1974): 435–450.

4

Î äèõîòîìèè âíåøíèõ è âíóòðåííèõ îùóùåíèé ôèëîñîôû çàäóìûâàëèñü çàäîëãî äî Íàãåëÿ. Ñì. L. Wittgenstein, Philosophical Investigations, translated by G. E. M. Anscombe, P. M. S. Hacker, and J. Schulte, 4th ed. (West Sussex, UK: Wiley-Blackwell, 2009) (Âèòãåíøòåéí, Ëþäâèã. Ôèëîñîôñêèå èññëåäîâàíèÿ).

5

P. M. Churchland, “Some Reductive Strategies in Cognitive Neurobiology,” Mind 95 (1986): 279–309; P. Godfrey-Smith, “On Being an Octopus,” Boston Review, May/June 2013, 46–60.

6

Ïðîíèöàòåëüíûé ÷èòàòåëü çàìåòèò, ÷òî ìîçã ïðåäñòàâëÿåò ñîáîé íåëèíåéíóþ ñèñòåìó è, âïîëíå âîçìîæíî, íå÷òî áîëüøåå, ÷åì ïðîñòî ñóììó ñâîèõ ÷àñòåé. Ìíå êàæåòñÿ, îáëàñòè ñõîäñòâà ìîæíî ñðàâíèòü ñ ðàêóðñàìè ôîòîñúåìêè. Ôîòîãðàôèÿ – ýòî äâóìåðíîå, ïëîñêîå îòîáðàæåíèå ïðîñòðàíñòâà, íî, åñëè îäèí ñíèìîê íå äàåò ïîëíîãî ïðåäñòàâëåíèÿ îá îáúåêòå, ìîæíî ïðîèçâåñòè ñúåìêó ñ ðàçíûõ òî÷åê è ïîëó÷èòü äîñòàòî÷íî îáúåìíóþ, ïðèáëèæåííóþ ê äåéñòâèòåëüíîñòè êàðòèíó. Ñîîòâåòñòâåííî, âûøåóïîìÿíóòûå îáëàñòè òîæå ìîãóò áûòü ñíèìêàìè ñîçíàíèÿ «ñ ðàçíûõ òî÷åê».

7

J. E. LeDoux, “Coming to Terms with Fear,” Proceedings of the National Academy of Sciences of the United States of America 111 (2014): 2871–2878.

8

A. M. Owen, M. R. Coleman, M. Boly, M. H. Davis, S. Laureys, and J. D. Pickard, “Detecting Awareness in the Vegetative State,” Science 313 (2006): 1402.

9

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, “Identifying Natural Images from Human Brain Activity,” Nature 452 (2008): 352–356; S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu, and J. L. Gallant, “Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies,” Current Biology 21 (2011): 1641–1646; T. Naselaris, C. A. Olman, D. E. Stansbury, K. Ugurbil, and J. L. Gallant, “A Voxel-Wise Encoding Model for Early Visual Areas Decodes Mental Images of Remembered Scenes,” NeuroImage 105 (2015): 215–228.

10

K. Rubia, S. Overmeyer, E. Taylor, M. Brammer, S. C. R. Williams, A. Simmons, C. Andrew, and E. T. Bullmore, “Functional Frontalisation with Age: Mapping Neurodevelopmental Trajectories with FMRI,” Neuroscience Biobehavioral Reviews 24 (2000): 13–19; A. R. Aron, T. E. Behrens, S. Smith, M. J. Frank, and R. A. Poldrack, “Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI,” Journal of Neuroscience 27 (2007): 3743–3752; A. Aron, T. W. Robbins, and R. A. Poldrack, “Inhibition and the Right Inferior Frontal Cortex,” Trends in Cognitive Sciences 8 (2004): 170–177.

11

W. Mischel, Y. Shoda, and M. L. Rodriguez, “Delay of Gratification in Children,” Science 244 (1989): 933–938.

12

B. J. Casey, L. H. Somerville, I. H. Gotlib, O. Ayduk, N. T. Franklin, M. K. Askren, J. Jonides, et al. “Behavioral and Neural Correlates of Delay of Gratification 40 Years Later,” Proceedings of the National Academy of Sciences of the United States of America 108 (2011): 14998–15003.

13

Çäåñü è äàëåå «ãîâîðÿùèå» êëè÷êè æèâîòíûõ äàþòñÿ â ïåðåâîäå äëÿ ïåðåäà÷è îïèñûâàåìûõ àâòîðîì îñîáåííîñòåé õàðàêòåðà è âíåøíîñòè èñïûòóåìûõ, îäíàêî, ïîñêîëüêó ðå÷ü èäåò î ðåàëüíûõ æèâîòíûõ, ó÷àñòâîâàâøèõ â èññëåäîâàíèè è ôèãóðèðóþùèõ â îïóáëèêîâàííûõ àâòîðîì è åãî êîëëåãàìè íàó÷íûõ ðàáîòàõ, îðèãèíàë êëè÷êè ïðèâîäèòñÿ â ñêîáêàõ ïðè ïåðâîì óïîìèíàíèè. – Ïðèì. ïåð.

14

B. Milner, “Effects of Different Brain Lesions on Card Sorting: The Role of the Frontal Lobes,” Archives of Neurology 9 (1963): 90–100; A. M. Owen, A. C. Roberts, J. R. Hodges, B. A. Summers, C. E. Polkey, and T. W. Robbins, “Contrasting Mechanisms of Impaired Attentional Set-Shifting in Patients with Frontal Lobe Damage or Parkinson’s Disease,” Brain 116 (1993): 1159–1175.

15

A. Diamond and P. S. Goldman-Rakic, “Comparison of Human Infants and Rhesus Monkeys on Piaget’s AB Task: Evidence for Dependence on Dorsolateral Prefrontal Cortex,” Experimental Brain Research 74 (1989): 24–40.

16

E. L. MacLean, B. Hare, C. L. Nunn, E. Addessi, F. Amici, R. C. Anderson, F. Aureli, et al., “The Evolution of Self-Control,” Proceedings of the National Academy of Sciences of the United States of America 111 (2014): E2140 – E2148.

17

W. James, The Principles of Psychology (New York: Henry Holt, 1890); I. P. Pavlov, Conditioned Reflexes (Oxford: Oxford University Press, 1927); E. L. Thorndike, Animal Intelligence (New York: Macmillan, 1911); B. F. Skinner, The Behavior of Organisms: An Experimental Analysis (New York: Appleton-Century-Crofts, 1938).

18

A. Newell and H. A. Simon, Human Problem Solving (New York: Prentice-Hall, 1972).

19

D. E. Rumelhart, J. L. McClelland, and PDP Research Group, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Cambridge, MA: MIT Press, 1986); P. S. Churchland and T. J. Sejnowski, The Computational Brain (Cambridge, MA: MIT Press, 1992).

20

G. Jékeley, F. Keijzer, and P. Godfrey-Smith, “An Option Space for Early Neural Evolution,” Philosophical Transactions of the Royal Society B 370 (2015): 20150181.

21

F. J. Varela, E. Thompson, and E. Rosch, The Embodied Mind: Cognitive Science and Human Experience (Cambridge, MA: MIT Press, 1991).

22

L. P. J. Selen, M. N. Shadlen, and D. M. Wolpert, “Deliberation in the Motor System: Reflex Gains Track Evolving Evidence Leading to a Decision,” Journal of Neuroscience 32 (2012): 2276–2286.

23

A. R. Damasio, Descartes’ Error: Emotion, Reason, and the Human Brain (New York: G. P. Putnam, 1994).

24

N. Shubin, Your Inner Fish: A Journey into the 3.5-Billion-Year History of the Human Body (New York: Pantheon, 2008).

25

M. Ruta, J. Botha-Brink, S. A. Mitchell, and M. J. Benton, “The Radiation of Cynodonts and the Ground Plan of Mammalian Morphological Diversity,” Proceedings of the Royal Society of London B 280 (2013): 20131865.

26

G. von Bonin, “Brain-Weight and Body-Weight of Mammals,” Journal of General Psychology 16 (1937): 379–389; K. S. Lashley, “Persistent Problems in the Evolution of Mind,” Quarterly Review of Biology 24 (1949): 28–42; L. Chittka and J. Niven, “Are Bigger Brains Better?” Current Biology 19 (2009): R995 – R1008.

27

H. J. Jerison, Evolution of the Brain and Intelligence (New York: Academic, 1973).

28

G. Roth and U. Dicke, “Evolution of the Brain and Intelligence,” Trends in Cognitive Sciences 9 (2005): 250–257.

29

Íàïðèìåð, ïëîùàäü ñôåðû ïðîïîðöèîíàëüíà r2, ãäå r – ðàäèóñ, òîãäà êàê îáúåì ïðîïîðöèîíàëåí r3. Ñîîòâåòñòâåííî, ïëîùàäü áóäåò ïðîïîðöèîíàëüíà îáúåìó â ñòåïåíè 2/3.

30

T. W. Deacon, “Rethinking Mammalian Brain Evolution,” American Zoologist 30 (1990): 629–705.

31

Íåñìîòðÿ íà óáåäèòåëüíûå ñâèäåòåëüñòâà ïîëîæèòåëüíîãî âîçäåéñòâèÿ äèåòû è ôèçè÷åñêèõ óïðàæíåíèé íà êîãíèòèâíûå ôóíêöèè, ñêîðåå âñåãî, ýòî îáúÿñíÿåòñÿ íå èçìåíåíèåì ìàññû òåëà, à àêòèâèçàöèåé ôàêòîðà ðîñòà íåéðîíîâ.

32

S. Herculano-Houzel, The Human Advantage: A New Understanding of How Our Brain Became Remarkable (Cambridge, MA: MIT Press, 2016).

33

B. L. Finlay and R. B. Darlington, “Linked Regularities in the Development and Evolution of Mammalian Brains,” Science 268 (1995): 1578–1584.

34

R. A. Barton and P. H. Harvey, “Mosaic Evolution of Brain Structure in Mammals,” Nature Neuroscience 405 (2000): 1055–1058

35

H. J. Karten, “Vertebrate Brains and Evolutionary Connectomics: On the Origins of the Mammalian ‘Neocortex,’” Proceedings of the Royal Society of London B 370 (2015): 20150060.

36

J. R. Krebs, D. F. Sherry, S. D. Healy, V. H. Perry, and A. L. Vaccarino, “Hippocampal Specialization of Food-Storing Birds,” Proceedings of the National Academy of Sciences of the United States of America 86 (1989): 1388–1392.

37

K. Zhang and T. J. Sejnowski, “A Universal Scaling Law Between Gray Matter and White Matter of Cerebral Cortex,” Proceedings of the National Academy of Sciences of the United States of America 97 (2000): 5621–5626.

38

S. Seung, Connectome: How the Brain’s Wiring Makes Us Who We Are (New York: Houghton Mifflin Harcourt, 2012).

39

S. Dehaene, Consciousness and the Brain: Deciphering How the Brain Codes Our Thoughts (New York: Penguin, 2014).

40

T. M. Perl, L. Bedard, T. Kosatsky, E. C. D. Todd, and R. S. Remis, “An Outbreak of ToxicEncephalopathy Caused by Eating Mussels Contaminated with Domoic Acid,” New England Journal of Medicine 322 (1990): 1775–1780.

41

H. Parfenova, S. Basuroy, S. Bhattacharya, D. Tcheranova, Y. Qu, R. F. Regan, and C. W. Leffler, “Glutamate Induces Oxidative Stress and Apoptosis in Cerebral Vascular Endothelial Cells: Contributions of HO-1 and HO-2 to Cytoprotection,” American Journal of Physiology – Cell Physiology 290 (2006): C1399 – C1410.

42

R. S. Teitelbaum, R. J. Zatorre, S. Carpenter, D. Gendron, A. C. Evans, and A. Gjedde, “Neurologic Sequelae of Domoic Acid Intoxication Due to the Ingestion of Contaminated Mussels,” New England Journal of Medicine 322 (1990): 1781–1787.

43

S. S. Bates, C. J. Bird, A. S. W. de Freitas, R. Foxall, M. Gilgan, L. A. Hanic, G. R. Johnson, et al., “Pennate Diatom Nitzschia Pungens as the Primary Source of Domoic Acid, a Toxin in Shellfish from Eastern Prince Edward Island, Canada,” Canadian Journal of Fisheries and Aquatic Sciences 46 (1989): 1203–1215.

44

C. A. Scholin, F. Gulland, G. J. Doucette, S. Benson, M. Busman, F. P. Chavez, J. Cordaro, et al., “Mortality of Sea Lions Along the Central California Coast Linked to a Toxic Diatom Bloom,” Nature 403 (2000): 80–84.

45

P. F. Cook, C. Reichmuth, A. A. Rouse, L. A. Libby, S. E. Dennison, O. T. Carmichael, K. T. Kruse-Elliott, et al., “Algal Toxin Impairs Sea Lion Memory and Hippocampal Connectivity, with Implications for Strandings,” Science 350 (2015): 1545–1547.

46

“What Is Epilepsy?” Epilepsy Foundation, n.d., www.epilepsy.com/learn/epilepsy-101/what-epilepsy, retrieved March 16, 2016.

47

M. Costandi, “Diagnosing Dostoyevsky’s Epilepsy,” 2007, https://neurophilosophy.wordpress.com/2007/04/16/diagnosing-dostoyevskys-epilepsy, retrieved March 16, 2016.

48

Äîñòîåâñêèé Ô. Ì., Èäèîò.

49

L. Bonilha, T. Nesland, G. U. Martz, J. E. Joseph, M. V. Spampinato, J. C. Edwards, and A. Tabesh, “Medial Temporal Lobe Epilepsy Is Associated with Neuronal Fibre Loss and Paradoxical Increase in Structural Connectivity of Limbic Structures,” Journal of Neurology, Neurosurgery and Psychiatry 83, no. 9 (2012); V. Dinkelacker, R. Valabregue, L. Thivard, S. Lehéricy, M. Baulac, S. Samson, and S. Dupont, “Hippocampal‐Thalamic Wiring in Medial Temporal Lobe Epilepsy: Enhanced Connectivity Per Hippocampal Voxel,” Epilepsia 56 (2015): 1217–1226.

50

S. Pinker, The Language Instinct (New York: William Morrow, 1994).

51

R. J. Schusterman and K. Krieger, “California Sea Lions Are Capable of Semantic Representation,” Psychological Record 34 (1984): 3–23.

52

R. J. Schusterman, C. R. Kastak, and D. Kastak, “The Cognitive Sea Lion: Meaning and Memory in the Laboratory and in Nature,” in The Cognitive Animal: Empirical and Theoretical Perspectives on Animal Cognition, edited by M. Bekoff, C. Allen, and G. M. Burghardt, 217–228 (Cambridge, MA: MIT Press, 2002).

53

Êðîìå ýòîãî, ó ÿçûêà èìåþòñÿ è äðóãèå îñîáåííîñòè è ñîñòàâëÿþùèå: ãðàììàòèêà, ñèíòàêñèñ, ðåêóðñèÿ è òàê äàëåå.

54

P. Kivy, “Charles Darwin on Music,” Journal of the American Musicological Society 12 (1959): 42–48.

55

C. Darwin, The Descent of Man, and Selection in Relation to Sex (London: John Murray, 1871). (Äàðâèí ×. Ïðîèñõîæäåíèå ÷åëîâåêà è ïîëîâîé îòáîð).

56

A. D. Patel, “Musical Rhythm, Linguistic Rhythm, and Human Evolution,” Music Perception: An Interdisciplinary Journal 24 (2006): 99–104.

57

P. Cook, A. Rouse, M. Wilson, and C. Reichmuth, “A California Sea Lion (Zalophus Californianus) Can Keep the Beat: Motor Entrainment to Rhythmic Auditory Stimuli in a Non Vocal Mimic,” Journal of Comparative Psychology 127 (2013): 412.

58

Ñì. “Sea Lion Dances to ‘Boogie Wonderland,’” YouTube, posted April 2, 2013, https://www.youtube.com/watch?v=KUfRSm8NTZg; “Beat Keeping in a California Sea Lion,” You-Tube, posted March 31, 2013, https://www.youtube.com/watch?v=6yS6qU_w3JQ.

59

M. Dhamala, G. Pagnoni, K. Wiesenfeld, C. F. Zink, M. Martin, and G. S. Berns, “Neural Correlates of the Complexity of Rhythmic Finger Tapping,” NeuroImage 20 (2003): 918–926.

60

S. H. Fatemi, K. A. Aldinger, P. Ashwood, M. L. Bauman, C. D. Blaha, G. J. Blatt, A. Chauhan, et al., “Consensus Paper: Pathological Role of the Cerebellum in Autism,” The Cerebellum 11 (2012): 777–807.

61

A. A. Rouse, P. F. Cook, E. W. Large, and C. Reichmuth, “Beat Keeping in a Sea Lion as Coupled Oscillation: Implications for Comparative Understanding of Human Rhythm,” Frontiers in Neuroscience 10, no. 257 (2016).

62

L. Marino, T. L. Murphy, A. L. DeWeerd, J. A. Morris, S. H. Ridgway, A. J. Fobbs, N. Humblot, and J. I. Johnson, “Anatomy and Three-Dimensional Reconstructions of the Brain of a White Whale (Delphinapterus Leucas) from Magnetic Resonance Images,” Anatomical Record 262 (2001): 429–439; L. Marino, K. D. Sudheimer, D. A. Pabst, W. A. McLellan, D. Filsoof, and J. I. Johnson, “Neuroanatomy of the Common Dolphin (Delphinus Delphis) as Revealed by Magnetic Resonance Imaging,” Anatomical Record 268 (2002): 411–429.

63

D. Reiss and L. Marino, “Mirror Self-Recognition in the Bottlenose Dolphin: A Case of Cognitive Convergence,” Proceedings of the National Academy of Sciences of the United States of America 98 (2001): 5937–5942.

64

H. H. A. Oelschlager and J. S. Oelschlager, “Brain,” in Encyclopedia of Marine Mammals, edited by W. F. Perrin, B. Wursig, and J. G. M. Thewissen, 134–149 (Burlington, MA: Academic Press, 2009).

65

A. S. Frankel, “Sound Production,” in Encyclopedia of Marine Mammals, edited by W. F. Perrin, B. Wursig, and J. G. M. Thewissen, 1056–1071 (Burlington, MA: Academic Press, 2009).

66

W. W. L. Au, “Echolocation,” in Encyclopedia of Marine Mammals, edited by W. F. Perrin, B. Wursig, and J. G. M. Thewissen, 348–357 (Burlington, MA: Academic Press, 2009).

67

V. V. Popov, T. F. Ladygina, and A. Y. Supin, “Evoked Potentials of the Auditory Cortex of the Porpoise, Phocoena Phocoena,” Journal of Comparative Physiology A 158 (1986): 705–711; V. E. Sokolov, T. F. Ladygina, and A. Y. Supin, “Localization of Sensory Zones in the Dolphin’s Cerebral Cortex,” Doklady Akademy Nauk SSSR 202 (1972): 490–493; A. V. Revishchin and L. J. Garey, “The Thalamic Projection to the Sensory Neocortex of the Porpoise, Phocoena Phocoena,” Journal of Anatomy 169 (1990): 85–102.

68

Oelschlager and Oelschlager, “Brain.”

69

M. Kossl, J. C. Hechavarria, C. Voss, S. Macias, E. C. Mora, and M. Vater, “Neural Maps for Target Range in the Auditory Cortex of Echolating Bats,” Current Opinion in Neurobiology 24 (2014): 68–75.

70

J. Parker, G. Tsagkogeorga, J. A. Cotton, Y. Liu, P. Provero, E. Stupka, and S. J. Rossiter, “Genome-Wide Signatures of Convergent Evolution in Echolocating Mammals,” Nature 502 (2013): 228–231.

71

M. Wells, “In Search of the Buy Button,” Forbes, September 1, 2003, 62–70.

72

Âïîñëåäñòâèè Âóëó ïðèøëîñü îçàãëàâèòü ýòó ðàáîòó â áîëåå ïðîçàè÷åñêîì êëþ÷å: see E. Vul, C. Harris, P. Winkielman, and H. Pashler, “Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition,” Perspectives on Psychological Science 4 (2009): 274–290.

73

R. A. Poldrack, “Can Cognitive Processes Be Inferred from Neuroimaging Data?” Trends in Cognitive Sciences 10 (2006): 59–63.

74

L. Barrett, “Why Brains Are Not Computers, Why Behaviorism Is Not Satanism, and Why Dolphins Are Not Aquatic Apes,” Behavior Analyst 39 (2016): 9–23.

75

G. Berns, “Dogs Are People, Too,” New York Times, October 5, 2013.

76

G. S. Berns, J. C. Chappelow, M. Cekic, C. F. Zink, G. Pagnoni, and M. E. Martin-Skurski, “Neurobiological Substrates of Dread,” Science 312 (2006): 754–758.

77

Âåëêðî (Velcro) – òåêñòèëüíàÿ çàñòåæêà-ëèïó÷êà. – Ïðèì. ïåð.

78

R. J. Herrnstein, “Relative and Absolute Strength of Response as a Function of Frequency of Reinforcement,” Journal of the Experimental Analysis of Behavior 4 (1961): 267–272.

79

Åùå ðàíüøå ïàðàäîêñ îïèñàí ó Àðèñòîòåëÿ â òðàêòàòå «Î Íåáå».

80

M. Hauskeller, “Why Buridan’s Ass Doesn’t Starve,” Philosophy Now 81 (2010): 9.

81

G. Loomes and R. Sugden, “Regret Theory: An Alternative Theory of Rational Choice Under Uncertainty,” Economic Journal 92 (1982): 805–824.

82

N. Camille, G. Coricelli, J. Sallet, P. Pradat-Diehl, J.-R. Duhamel, and A. Sirigu, “The Involvement of the Orbitofrontal Cortex in the Experience of Regret,” Science 304 (2004): 1167–1170.

83

A. P. Steiner and A. D. Redish, “Behavioral and Neurophysiological Correlates of Regret in Rat Decision-Making on a Neuroeconomic Task,” Nature Neuroscience 17 (2014): 995–1002.

84

J. Kaminski, J. Call, and J. Fischer, “Word Learning in a Domestic Dog: Evidence for ‘Fast Mapping,’” Science 304 (2004): 1682–1683.

85

J. W. Pilley and A. K. Reid, “Border Collie Comprehends Object Names as Verbal Referents,” Behavioural Processes 86 (2011): 1641–1646.

86

S. Nishimoto, A. T. Vu, T. Naselaris, Y. Benjamini, B. Yu, and J. L. Gallant, “Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies,” Current Biology 21 (2011): 1641–1646.

87

A. G. Huth, W. A. de Heer, T. L. Griffiths, F. E. Theunissen, and J. L. Gallant, “Natural Speech Reveals the Semantic Maps That Tile Human Cerebral Cortex,” Nature 532 (2016): 453–458.

88

E. Van der Zee, H. Zulch, and D. Mills, “Word Generalization by a Dog (Canis Familiaris): Is Shape Important?” PLoS ONE 7, no. 11 (2012): e49382.

89

B. Landau, L. B. Smith, and S. S. Jones, “The Importance of Shape in Early Lexical Learning,” Cognitive Development 3 (1988): 299–321.

90

P. Bloom, “Can a Dog Learn a Word?” Science 304 (2004): 1605–1606.

91

S. Pinker and R. Jackendoff, “The Faculty of Language: What’s Special About It?” Cognition 95 (2005): 201–236.

92

R. J. Schusterman and K. Krieger, “California Sea Lions Are Capable of Semantic Representation,” Psychological Record 34 (1984): 3–23.

93

J. C. Lilly, Communication Between Man and Dolphin: The Possibilities of Talking with Other Species (New York: Julian Press, 1978).

94

L. M. Herman, D. G. Richards, and J. P. Wolz, “Comprehension of Sentences by Bottlenosed Dolphins,” Cognition 16 (1984): 129–219; L. M. Herman, S. A. Kuczaj, and M. D. Holder, “Responses to Anomalous Gestural Sequences by a Language-Trained Dolphin: Evidence for Processing of Semantic Relations and Syntactic Information,” Journal of Experimental Psychology: General 122 (1993): 184–194.

95

A. G. Huth, S. Nishimoto, A. T. Vu, and J. L. Gallant, “A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories Across the Human Brain,” Neuron 76 (2012): 1210–1224.

96

C. A. Muller, K. Schmitt, A. L. A. Barber, and L. Huber, “Dogs Can Discriminate Emotional Expression of Human Faces,” Current Biology 25 (2015): 1–5.

97

C. G. Gross, C. E. Rocha-Miranda, and D. B. Bender, “Visual Properties of Neurons in Inferotemporal Cortex of the Macaque,” Journal of Neurophysiology 35 (1972): 96–111; R. Desimone, T. D. Albright, C. G. Gross, and C. Bruce, “Stimulus-Selective Properties of Inferior Temporal Neurons in the Macaque,” Journal of Neuroscience 4 (1984): 2051–2062; D. Y. Tsao, S. Moeller, and W. A. Freiwald, “Comparing Face Patch Systems in Macaques and Humans,” Proceedings of the National Academy of Sciences of the United States of America 105 (2008): 19514–19519.

98

D. D. Dilks, P. A. Cook, S. K. Weiller, H. P. Berns, M. Spivak, and G. S. Berns, “Awake fMRI Reveals a Specialized Region in Dog Temporal Cortex for Face Processing,” PeerJ 3 (2015): e1115.

99

L. V. Cuaya, R. Hernández-Pérez, and L. Concha, “Our Faces in the Dog’s Brain: Functional Imaging Reveals Temporal Cortex Activation During Perception of Human Faces,” PLoS ONE 11, no. 3 (2016): e0149431.

100

K. M. Kendrick and B. A. Baldwin, “Cells in Temporal Cortex of Conscious Sheep Can Respond Preferentially to the Sight of Faces,” Science 236 (1987): 448–450.

101

C. Nawroth, J. M. Brett, and A. G. McElligott, “Goats Display Audience-Dependent Human-Directed Gazing Behaviour in a Problem-Solving Task,” Biology Letters 12 (2016): 20160283.

102

J. M. Marzluff, R. Miyaoka, S. Minoshima, and D. J. Cross, “Brain Imaging Reveals Neuronal Circuitry Underlying the Crow’s Perception of Human Faces,” Proceedings of the National Academy of Sciences of the United States of America 109 (2012): 15912–15917.

103

M. Coulon, B. L. Deputte, Y. Heyman, and C. Baudoin, “Individual Recognition in Domestic Cattle (Bos Taurus): Evidence from 2D Images of Heads from Different Breeds,” PLoS ONE 4 (2009): e4441.

104

J. M. Plotnick, F. B. M. de Waal, and D. Reiss, “Self-Recognition in an Asian Elephant,” Proceedings of the National Academy of Sciences of the United States of America 103 (2006): 17053–17057.

105

S. G. Lomber and P. Cornwell, “Dogs, but Not Cats, Can Readily Recognize the Face of Their Handler,” Journal of Vision 5 (2005): 49.

106

T. Raettig and S. A. Kotz, “Auditory Processing of Different Types of Pseudo-Words: An Event-Related fMRI Study,” NeuroImage 39 (2008): 1420–1428.

107

C. Fellbaum, “Wordnet and Wordnets,” in Encyclopedia of Language and Linguistics, edited by K. Brown, 665–670 (Oxford: Elsevier, 2005).

108

S. Waxman, X. Fu, S. Arunachalam, E. Leddon, K. Geraghty, and H. Song, “Are Nouns Learned Before Verbs?” Child Development Perspectives 7 (2013): 155–159.

109

Ðåêîíñòðóêöèÿ ñîáûòèé ïî èññëåäîâàíèþ Ðîáåðòà Ïýääëà. Ñì. R. Paddle, The Last Tasmanian Tiger: The History and Extinction of the Thylacine (Cambridge: Cambridge University Press, 2000).

110

“Beauty and the Beast at the Hobart Zoo: Girl Whose Greatest Chum Is a Full-Grown Leopard,” Register News-Pictorial, May 17, 1930, http://trove.nla.gov.au/newspaper/article/54241041.

111

S. R. Sleightholme, “Confirmation of the Gender of the Last Captive Thylacine,” Australian Zoologist 35 (2011): 953–956.

112

“Tasmanian Tiger/Thylacine Combined Footage,” YouTube, posted May 3, 2007, https://www.youtube.com/watch?v=odswge5onwY.

113

D. Quammen, The Song of the Dodo: Island Biogeography in an Age of Extinctions (New York: Scribner, 1996).

114

E. Guiler and P. Godard, Tasmanian Tiger: A Lesson to Be Learnt (Perth, Australia: Abrolhos, 1998).

115

C. Wemmer, “Opportunities Lost: Zoos and the Marsupial That Tried to Be a Wolf,” Zoo Biology 21 (2002): 1–4.

116

Òàì æå.

117

C. R. Campbell, “The Thylacine Museum,” www.naturalworlds.org/thylacine/index.htm, retrieved April 19, 2016.

118

E. R. Guiler, Thylacine: The Tragedy of the Tasmanian Tiger (Melbourne: Oxford University Press, 1985), 14.

119

Òàì æå, 16.

120

Òàì æå, 138.

121

Òàì æå, 140.

122

E. R. Guiler and G. K. Meldrum, “Suspected Sheep Killing by the Thylacine Thylacinus cynocephalus (Harris),” Australian Journal of Science 20 (1958): 214, reprinted in Guiler, Thylacine, 141.

123

K. W. S. Ashwell, ed., The Neurobiology of Australian Marsupials (Cambridge: Cambridge University Press, 2010).

124

C. Bailey, Lure of the Thylacine: True Stories and Legendary Tales of the Tasmanian Tiger (Victoria, Australia: Echo Publishing, 2016).

125

US Department of Agriculture, “Sheep and Lamb Predator and Nonpredator Death Loss in the United States,” 2015, USDA-APHIS-VS-CEAH-NAHMS.

126

B. Figueirido and C. M. Janis, “The Predatory Behaviour of the Thylacine: Tasmanian Tiger or Marsupial Wolf?” Biology Letters (2011): 937–940.

127

M. E. Jones and D. M. Stoddart. “Reconstruction of the Predatory Behaviour of the Extinct Marsupial Thylacine (Thylacinus cynocephalus),” Journal of Zoology 246 (1998): 239–246.

128

W. Miller, D. I. Drautz, J. E. Janecka, A. M. Lesk, A. Ratan, L. P. Tomsho, M. Packard, et al., “The Mitochondrial Genome Sequence of the Tasmanian Tiger (Thylacinus cynocephalus),” Genome Research 19 (2009): 213–220.

129

E. P. Murchison, C. Tovar, A. Hsu, H. S. Bender, P. Kheradpour, C. A. Rebbeck, D. Obendorf, et al., “The Tasmanian Devil Transcriptome Reveals Schwann Cell Origins of a Clonally Transmissible Cancer,” Science 327 (2010): 84–87.

130

C. Murgia, J. K. Pritchard, S. Y. Kim, A. Fassati, and R. A. Weiss, “Clonal Origin and Evolution of a Transmissible Cancer,” Cell 126 (2006): 477–487.

131

Save the Tasmanian Devil, www.tassiedevil.com.au/tasdevil.nsf, retrieved May 17, 2016.

132

T. D. Beeland, The Secret World of Red Wolves: The Fight to Save North America’s Other Wolf (Chapel Hill: University of North Carolina Press, 2013).

133

Êðîìå òîãî, Ñìèòñîíîâñêèé èíñòèòóò îäîëæèë íàì îáðàçåö ìîçãà òàñìàíèéñêîãî äüÿâîëà òîé æå äàâíîñòè, ÷òî è ìîçã òèëàöèíà, îäíàêî îí òîæå îêàçàëñÿ óñîõøèì.

134

A. A. Abbie, “The Excitable Cortex in Perameles, Sarcophilus, Dasyurus, Trichosurus and Wallabia (Macropus),” Journal of Comparative Neurology 72 (1940): 469–487; L. Krubitzer, “The Magnificent Compromise: Cortical Field Evolution in Mammals,” Neuron 56 (2007).

135

G. S. Berns and K. W. S. Ashwell, “Reconstruction of the Cortical Maps of the Tasmanian Tiger and Comparison to the Tasmanian Devil,” PLoS ONE 12 (2017): e0168993.

136

S. Wroe, C. McHenry, and J. Thomason, “Bite Club: Comparative Bite Force in Big Biting Mammals and the Prediction of Predatory Behaviour in Fossil Taxa,” Proceedings of the Royal Society of London B 272 (2005): 619–625.

137

Ýòà ÷àñòü ãëàâû íàïèñàíà íà îñíîâå: N. Clements, The Black War: Fear, Sex, and Resistance in Tasmania (Queensland, Australia: University of Queensland Press, 2014).

138

Òàì æå, 17.

139

Òàì æå, 44–45.

140

Òàì æå, 49.

141

Òàì æå, 60.

142

Òàì æå, 89.

143

Çåìëÿ Âàí-Äèìåíà – ïåðâîíà÷àëüíîå íàçâàíèå îñòðîâà Òàñìàíèÿ äî ïåðåèìåíîâàíèÿ â 1856 ãîäó. – Ïðèì. ïåð.

144

E. R. Guiler, Thylacine: The Tragedy of the Tasmanian Tiger (Melbourne: Oxford University Press, 1985), 16.

145

Lee Jackson, “Victorian Money: How Much Did Things Cost?” Dictionary of Victorian London, www.victorianlondon.org/finance/money.htm, retrieved May 26, 2016.

146

Ëè÷íàÿ ïåðåïèñêà ïî ýëåêòðîííîé ïî÷òå. 6 ìàÿ 2016 ãîäà.

147

C. Bailey, Shadow of the Thylacine: One Man’s Epic Search for the Tasmanian Tiger (Victoria, Australia: Five Mile Press, 2013).

148

Ìàðøðóò ìîæíî íàéòè íà Tastracks, http://tastracks.webs.com/southwest.htm#529486938, retrieved June 2, 2016.

149

“Last Remaining Medical School to Use Live Animals for Training Makes Switch to Human-Relevant Methods,” Physicians Committee for Responsible Medicine, June 30, 2016, https://www.pcrm.org/last_animal_lab, retrieved July 22, 2016.

150

J. Bentham, The Principles of Morals and Legislation (Amherst: Prometheus Books, 1988).

151

T. Cowan, “The Animal Welfare Act: Background and Selected Animal Welfare Legislation,” Congressional Research Service, 2013.

152

United States Code, 2013 edition, Chapter 54, “Transportation, Sale, and Handling of Certain Animals,” https://www.gpo.gov/fdsys/pkg/USCODE-2013-title7/html/USCODE-2013-title7-chap54.htm.

153

W. M. S. Russell and R. L. Burch, The Principles of Humane Experimental Technique (London: Methuen, 1959).

154

P. Singer, Animal Liberation: The Definitive Classic of the Animal Movement (New York: HarperCollins, 2009).

155

“The Cambridge Declaration on Consciousness,” Francis Crick Memorial Conference, July 7, 2012, http://fcmconference.org/img/Cambridge DeclarationOnConsciousness.pdf, retrieved August 3, 2016.

156

“Annual Report Animal Usage by Fiscal Year,” US Department of Agriculture, Animal and Plant Health Inspection Service, June 2016, https://www.aphis.usda.gov/animal_welfare/downloads/7023/Annual-Reports-FY2015.pdf, retrieved August 1, 2016.

157

“Questions and Answers About Biomedical Research,” Humane Society of the United States, n.d., www.humanesociety.org/issues/biomedical _research/qa/questions_answers.html; “Mice and Rats in Laboratories,” People for the Ethical Treatment of Animals, n.d., www.peta.org/issues/animals-used-for-experimentation/animals-laboratories/mice-rats-laboratories, retrieved August 1, 2016.

158

H. Herzog, Some We Love, Some We Hate, Some We Eat: Why It’s So Hard to Think Straight About Animals (New York: Harper, 2010).

159

M. Botvinick and J. Cohen, “Rubber Hands ‘Feel’ Touch That Eyes See,” Nature 391 (1998): 756.

160

M. Wada, K. Takano, H. Ora, M. Ide, and K. Kansaku, “The Rubber Tail Illusion as Evidence of Body Ownership in Mice,” Journal of Neuroscience 36 (2016): 11133–11137.

161

J. Greene and J. Cohen, “For the Law, Neuroscience Changes Nothing and Everything,” Philosophical Transactions of the Royal Society B 359 (2004): 1775–1785.

162

Travis v. Murray, Supreme Court New York County (NY Slip Op 23405, 42 Misc 3d 447), 2013.

163

Rabideau v. City of Racine, Supreme Court of Wisconsin (243 Wis 2d 486, 491, 627 NW2d, 795, 798), 2001.

164

A. Galante, R. Sinibaldi, A. Conti, C. De Luca, N. Catallo, P. Sebastiani, V. Pizzella, et al., “Fast Room Temperature Very Low Field-Magnetic Resonance Imaging System Compatible with Magnetoencephalography Environment,” PLoS ONE 10 (2015): e0142701.

165

Y. N. Harari, Sapiens: A Brief History of Humankind (New York: HarperCollins, 2015). Ïåðåâîä íà ðóññêèé: Õàðàðè Þ. Sapiens. Êðàòêàÿ èñòîðèÿ ÷åëîâå÷åñòâà. – Ì.: Ñèíäáàä, 2017.

166

“The Cost of Sequencing a Human Genome,” National Human Genome Research Institute, updated July 6, 2016, https://www.genome.gov/27565109/the-cost-of-sequencing-a-human-genome, retrieved July 30, 2016.

167

Þâàëü Õàðàðè íàçûâàåò áóäóùèé âèä Homo deus, íî ìíå íå áëèçêà èäåÿ óïîäîáëåíèÿ êîãî áû òî íè áûëî Áîãó. Ñì. Y. N. Harari, Homo Deus: A Brief History of Tomorrow (New York: Harper-Collins, 2017). Ïåðåâîä íà ðóññêèé: Õàðàðè Þ. Homo Deus: Êðàòêàÿ èñòîðèÿ áóäóùåãî. – Ì.: Ñèíäáàä, 2018.

168

Living Planet Report 2016: Risk and Resilience in a New Era (Gland, Switzerland: WWF International, 2016).

Âåðíóòüñÿ ê ïðîñìîòðó êíèãè Âåðíóòüñÿ ê ïðîñìîòðó êíèãè