Эйнштейн. Его жизнь и его Вселенная - читать онлайн книгу. Автор: Уолтер Айзексон cтр.№ 48

читать книги онлайн бесплатно
 
 

Онлайн книга - Эйнштейн. Его жизнь и его Вселенная | Автор книги - Уолтер Айзексон

Cтраница 48
читать онлайн книги бесплатно

Заключительная кода E = mc2, сентябрь 1905 года

Своим письмом к товарищу по “Академии Олимпия” Конраду Габихту Эйнштейн начал свой год чудес, а односложной открыткой ему же, написанной в пьяном виде, отметил его кульминацию. Однако в сентябре он написал еще одно письмо Габихту, на этот раз пытаясь заманить его к себе работать в патентное бюро, из которого ясно, что образ Эйнштейна как одинокого волка создан явно искусственно и не совсем соответствует действительности. “Возможно, удастся заполучить тебя в наше сообщество патентных рабов, – писал он, – может быть, тебе покажется это относительно приятным делом. Действительно ли ты готов и хочешь приехать? Имей в виду, что кроме восьми часов на работе ежедневно остается еще восемь часов, чтобы подурачиться, а еще есть воскресенья. Я бы очень хотел, чтобы ты был здесь”.

Как и в том письме, написанном шесть месяцев тому назад, он мимоходом объявил о важнейшем научном прорыве – том, который может быть описан самым известным уравнением во всей научной литературе:

“Мне пришло на ум еще одно следствие статьи по электродинамике, а именно – что принцип относительности в сочетании с уравнениями Максвелла требует, чтобы масса была непосредственной мерой энергии, содержащейся в теле. Свет несет с собой массу. В случае с радием должно наблюдаться заметное уменьшение его массы. Идея занятная и соблазнительная; но не смеется ли надо мной всемилостивый Бог и не водит ли он меня за нос – этого мне знать не дано”81.

Эйнштейн развил эту идею с элегантной простотой. Статья, которую в Annalen der Physik получили от него 27 сентября 1905 года, названная “Зависит ли инерция тела от содержащейся в нем энергии?” [31] , включает в себя всего три пункта и занимает неполные три страницы. Ссылаясь на свою прежнюю работу по специальной теории относительности, он заявляет: “Результаты электродинамических исследований, недавно опубликованные мной в этом журнале, приводят к очень интересному следствию, вывод которого будет представлен в этой статье”82.

И на этот раз он выводит теорию из первых принципов и постулатов, не пытаясь объяснить эмпирические данные, которые начали собирать физики-экспериментаторы, изучающие катодные лучи, относительно зависимости массы от скорости частиц. Соединив теорию относительности и уравнения Максвелла, он начал (что уже не удивляет) с мысленного эксперимента. Он посчитал свойства двух световых импульсов, испущенных в противоположных направлениях телом, находящимся в покое. Затем он рассчитал свойства этих импульсов и испускающего их тела в системе координат, движущейся относительно первой, и отсюда пришел к уравнению, связывающему скорость и массу.

Результатом был элегантный вывод: масса и энергия суть разные проявления одного и того же свойства. Между двумя этими величинами есть фундаментальная взаимозависимость. Как Эйнштейн сформулировал это в своей статье, “масса тела есть мера содержащейся в нем энергии”.

Для того чтобы описать это соотношение, он также использовал замечательно простую формулу: “Если тело отдает энергию L в виде излучения, его масса уменьшается на величину L/V2”. Можно и по-другому переписать это выражение: L = mV2. До 1912 года Эйнштейн использовал для обозначения энергии букву L, а потом в рукописи перечеркнул ее и заменил более общепринятой – Е. А для скорости света он сначала использовал букву V, а потом заменил ее более привычной с. Таким образом, используя обозначения, которые вскоре стали общеупотребительными, Эйнштейн вывел свое знаменитое выражение:


Е = mc2.


Энергия равна массе, умноженной на квадрат скорости света. Скорость света, как известно, огромна. Ее квадрат неизмеримо больше. Поэтому небольшое количество вещества, если его массу полностью перевести в энергию, эквивалентно огромной энергии. Килограмм массы превращается примерно в 25 млрд киловатт-часов электрической энергии. Еще более наглядно: масса одной изюминки может обеспечить почти всю потребность в энергии Нью-Йорка в течение целого дня83. Как обычно, Эйнштейн закончил статью, предложив способ экспериментальной проверки предложенной им теории. “Не исключена возможность того, – написал он, – что эту теорию удастся проверить для веществ, энергия которых меняется в большей степени (например, солей радия)”.


Эйнштейн. Его жизнь и его Вселенная

Макс Планк. 1930-е гг.


Глава седьмая
Самая счастливая мысль. 1906-1909
Признание

Всплеск творческой активности Эйнштейна в 1905 году поражает воображение. Он разработал революционную квантовую теорию света, доказал существование атомов, объяснил броуновское движение, перевернул представления о пространстве и времени и вывел уравнение, которое потом станет самым известным уравнением в истории науки. Создается такое впечатление, что вначале заметило это не так уж много людей. По словам его сестры, Эйнштейн надеялся, что серия его статей в известном журнале обеспечит ему – безвестному патентному эксперту третьего класса – признание академического сообщества, а возможно, даже позволит получить академическую должность. “Но он был горько разочарован, – рассказывала она. – Публикации были встречены ледяным молчанием”1.

Это не совсем так. Небольшая, но весьма влиятельная горстка уважаемых физиков вскоре обратила внимание на статьи Эйнштейна, и как оказалось, в их числе был самый важный из всех возможных его почитателей, о котором только можно было мечтать. Это был Макс Планк, признанный европейский гуру теоретической физики, чью загадочную математическую константу, объясняющую излучение черного тела, Эйнштейн превратил в элемент совершенно новой реальности. Как член редколлегии Annalen der Physik, ответственный за поданные в журнал теоретические работы, Планк просмотрел работы Эйнштейна, и та, что была посвящена относительности, как вспоминал он позже, “сразу же вызвала мой живой интерес”. Как только она была опубликована, Планк прочитал в Берлинском университете лекцию по относительности2.

Планк был первым физиком, который поверил в теорию Эйнштейна и стал на нее ссылаться. В статье, опубликованной весной 1906 года, он утверждал, что теория относительности согласуется с принципом наименьшего действия – основным принципом физики, согласно которому свет или любой объект, движущийся от одной точки к другой, выбирает наикратчайший путь3.

Статья Планка не только внесла вклад в развитие теории относительности, но и помогла другим физикам поверить в ее правильность. То разочарование, которое Майя Эйнштейн заметила в своем брате, улетучилось. “Мои работы были высоко оценены и породили ряд других исследований, – ликовал он в письме к Соловину, – профессор Планк недавно написал мне об этом”4.

Преисполненный гордости патентный эксперт и знаменитый профессор вскоре обменялись письмами. Когда какой-то теоретик выразил сомнение в точке зрения Планка на то, что теория относительности согласуется с принципом наименьшего действия, Эйнштейн принял сторону Планка и написал ему об этом в открытке. Планк был рад. “Сейчас, когда сторонники принципа относительности составляют такую небольшую группу, – ответил он Эйнштейну, – вдвойне важно, чтобы у них не было разногласий между собой”. Он добавил, что надеется посетить Берн в будущем году и встретиться с Эйнштейном лично5.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию