Big Data простым языком - читать онлайн книгу. Автор: Алексей Благирев cтр.№ 10

читать книги онлайн бесплатно
 
 

Онлайн книга - Big Data простым языком | Автор книги - Алексей Благирев

Cтраница 10
читать онлайн книги бесплатно

Потому что какими бы продвинутыми ни были алгоритмы, все они отступают при встрече с аномалиями в данных, причина которых может быть в некачественной информации. Поэтому проектирование, зачистка, контроль и арбитраж целостности – это одни из самых важнейших задач, которые придется решать в новой цифровой экономике.

Переход к новой парадигме работы с аналитикой, данными и информацией потребует от организации более высокого уровня зрелости, а это означает, что бизнес будет вынужден решить невыполнимую задачу по обучению специалистов и интеграции новейших технологий работы с данными в кратчайшие сроки, изменив при этом роль и ответственность участников цепочки создания информационного контента.

В этой книге я разберу основные приемы и модели, которые можно применять при выполнении этих задач, и которые помогут ответить на этот вызов. Мы с вами проанализируем: как строить команду, как выглядят новые профессии и какие методы управления могут применяться. Я расскажу, как можно разобрать кейсы, и покажу, как спроектировал новые сервисы, которые смогут заменить традиционные аналитические записки или отчетность.

Глава 2
Стратегия данных
С чего начинается стратегия данных?

Стратегию данных каждый из ключевых менеджеров компании сегодня понимает по-разному. А некоторые ее вообще до сих не понимают. Оно и понятно, много букв. Это как вишенка на торте инноваций и технологий, в котором еще надо уметь разбираться, чтобы просто банально насладиться тем вкусом, который есть. В том числе по-разному ее понимают и ключевые игроки рынка, производители программного обеспечения, разработчики и архитекторы данных. Нельзя просто взять, собрать всех вместе и наивно полагать, что получится договориться о чем-то одном.

Жизненный цикл данных

Данные – это что-то непонятное, неопределенное, как бесформенный прозрачный кислород. Вроде есть, вроде важен, но с чего начать?

Но во всех взглядах есть общее ядро, которое разделяется каждым из участников и является одним из ключевых факторов выбора и реализации стратегии – это понимание цикла работы с данными. Я выделил несколько моделей, иллюстрирующих наиболее полный жизненный путь данных внутри организации.

Например, модель Малькольма Чисхолма [22] выделяет семь активных фаз взаимодействия с данными:

1. Data Capture – создание или сбор значений данных, которые еще не существуют и никогда не существовали в компании.

а. Data Acquisition – покупка данных, предложенных внешними компаниями;

b. Data Entry – генерация данных ручным вводом, при помощи мобильных устройств или программного обеспечения;

c. Signal Reception – получение данных с помощью телеметрии (интернет-вещей).

2. Data Maintenance – передача данных в точки, где происходит синтез данных и их использование в форме, наиболее подходящей для этих целей. Она часто включает в себя такие задачи, как перемещение, интеграция, очистка, обогащение, изменение данных, а также процессы экстракции-преобразования-нагрузки;

3. Data Synthesis – создание ценности из данных через индуктивную логику, использование других данных в качестве входных данных.

4. Data Usage – применение данных как информации для задач, которые должно запускать и выполнять предприятие. Использование данных имеет специальные задачи управления ими. Одна из них заключается в выяснении того, является ли законным использование данных в том виде, в котором хочет бизнес. Это называется «разрешенным использованием данных». Могут существовать регулирующие или контрактные ограничения на то, как фактически можно использовать данные, а часть роли управления данными заключается в обеспечении соблюдения этих ограничений.

5. Data Publication – отправка данных в место за пределами предприятия. Примером может служить брокеридж, который отправляет ежемесячные отчеты своим клиентам. После того, как данные были отправлены за пределы предприятия, де-факто невозможно их отозвать. Неверные значения данных не могут быть исправлены, поскольку они уже недоступны для предприятия. Управление данными может потребоваться, чтобы помочь решить, как будут обрабатываться неверные данные, которые были отправлены инвесторам.

6. Data Archival – копирование данных в среду, где они хранятся, до тех пор, пока не понадобятся снова для активного использования и удаления из всех активных производственных сред.

7. Data Purge – удаление каждой копии элемента данных с предприятия. В идеале это необходимо делать из архива, так как реализация задачи управления данными на этом этапе жизненного цикла данных определит, что очистка действительно была выполнена должным образом.

При работе с описанной моделью стоит отметить важные допущения:

• «Жизненный путь» – не совсем корректный термин, потому что данные сами себя не воспроизводят, более близкое значение – «история данных», но предлагается его не менять, из-за того, что текущего значения придерживается большинство участников рынка.

• Данные не обязательно должны проходить все семь фаз взаимодействия.

• Фазы взаимодействия не обязательно выстраиваются в конкретную последовательность. В реальности фазы могут проявляться в хаотичном порядке.

• Часть профессионального сообщества так же использует аббревиатуру ILM (Information Lifecyle Management). Разница [23] между двумя понятия состоит в следующем:


Big Data простым языком

Иными словами, по одной из версий управление данными является подмножеством цикла управления информацией, а сами подходы по управлению информацией уже являются подходами по управлению знаниями (Knowledge Management) в организации.

Но стратегия управления данными сама по себе является самостоятельным звеном в этой сложной цепочке. Поэтому, даже не рассматривая всю цепочку управления знаниями, можно с уверенностью сказать, что стратегия управления данными несет в себе самостоятельную ценность.

Утомил? А представьте, что в этом всем копается множество людей, которые в буквальном смысле спорят о дефинициях, правилах и отношениях.

Миссия компании и данные

Итак, при построении стратегии, вслед за определением ключевых точек работы с данными, обычно выбирается традиционный путь создания и разработки любой стратегии:

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию