Математика для любознательных (сборник) - читать онлайн книгу. Автор: Яков Перельман cтр.№ 31

читать книги онлайн бесплатно
 
 

Онлайн книга - Математика для любознательных (сборник) | Автор книги - Яков Перельман

Cтраница 31
читать онлайн книги бесплатно

В библиотеке, устроенной по десятичной системе, нахождение нужной книги упрощается до крайности. Если, например, вы интересуетесь геометрией, вы прямо идете к шкафам, где №-ра начинаются с 5-ти, отыскиваете тот шкаф, где хранятся книги № 51…и пересматриваете в нем только те полки, где стоят книги № 513… здесь собраны все книги по геометрии, имеющиеся в данной библиотеке. Точно так же, ища книги по социализму и коммунизму, вы обратитесь к книгам № 333…, не заглядывая в каталог и никого не затрудняя расспросами.

Как бы обширна ни была библиотека, никогда не может случиться недостатка в числах для нумерации книг [47].

Математика для любознательных (сборник)
Круглые числа

Вероятно, все замечали на себе и на окружающих, что среди цифр есть излюбленные, к которым мы питаем особенное пристрастие. Мы, например, очень любим «круглые числа», т. е. оканчивающиеся на 0 или 5. Пристрастие к определенным числам, предпочтение их другим, заложено в человеческой натуре гораздо глубже, чем обыкновенно думают. В этом отношении сходятся вкусы не только европейцев и их предков, например древних римлян, - но даже первобытных народов других частей света.

При каждой переписи населения обычно наблюдается чрезмерное обилие людей, возраст которых оканчивается на 5 или на 0; их гораздо больше, чем должно бы быть. Причина кроется, конечно, в том, что люди не помнят твердо, сколько им лет, и, показывая возраст, невольно «округляют» годы. Замечательно, что подобное же преобладание «круглых» возрастов наблюдается и на могильных памятниках древних римлян.

Эта одинаковость числовых пристрастий идет еще дальше. Один германский психолог (проф. К. Марбе) подсчитал, как часто встречается в обозначениях возраста на древнеримских могильных плитах та или иная цифра, и сравнил эти результаты с повторяемостью цифр в обозначениях возраста по переписи в американском штате Алабама, где живут преимущественно негры. Получилось удивительное согласие: древние римляне и современные нам негры до малейших подробностей сходятся в числовых пристрастиях! Конечные цифры возраста, по частоте их повторяемости, располагались в обоих случаях в одинаковой последовательности, а именно:

0, 5, 8, 2, 3, 7, 6, 4, 9 и 1.

Но и это не все. Чтобы выяснить числовые пристрастия современных европейцев, упомянутый ученый производил такого рода опыты: он предлагал множеству лиц определить «на глаз», сколько миллиметров заключает в себе полоска бумаги, например, в палец длиною, и записывал ответы. Подсчитав затем частоту повторения одних и тех же конечных цифр, ученый получил снова тот же самый ряд:

0, 5, 8, 2, 3, 7, 6, 4, 9 и 1.

Нельзя считать случайностью, что народы, столь отдаленные друг от друга и антропологически, и географически, - обнаруживают полную одинаковость числовых симпатий, т. е. явное пристрастие к «круглым» числам, оканчивающимся на 0 или 5, и заметную неприязнь к числам некруглым.

Любовь к пятеркам и десяткам находится, без сомнения, в прямой связи с десятичным основанием нашей системы счисления, т. е. в конечном итоге - с числом пальцев на обеих руках. Остается неразгаданной лишь та правильность, с какой слабеет эта симпатия по мере удаления от 5 и 10.

Это пристрастие к округленным числам обходится нам, надо заметить, довольно дорого. Товарные цены в розничной продаже всегда тяготеют к этим круглым числам: некруглое число, получающееся при исчислении продажной стоимости товара, дополняется до большего круглого числа. Цена книги редко бывает 57 коп., 63 коп., 84 коп., - а чаще 60 коп., 65 коп., 85 коп. Но округленность цены достигается обычно за счет покупателя, а не продавца. Общая сумма, которую потребители переплачивают за удовольствие приобретать товары по круглым ценам, накопляется весьма внушительная. Кто-то дал себе труд, задолго до последней войны, приблизительно подсчитать ее, и оказалось, что население прежней России ежегодно переплачивало в виде разницы между круглыми и некруглыми товарными ценами не менее 30 миллионов рублей. Не слишком ли дорогая дань невинной слабости к округлениям?

Математика для любознательных (сборник)
Глава II
Потомок древнего абака
Математика для любознательных (сборник)
Чеховская головоломка

Задача № 6


Припомним ту, в своем роде знаменитую арифметическую задачу, которая так смутила семиклассника Зиберова из Чеховского рассказа «Репетитор»:

«Купец купил 138 аршин черного и синего сукна за 540 руб. Спрашивается, сколько аршин купил он того и другого, если синее стоило 5 руб. за аршин, а черное 3 руб.?»

С тонким юмором описывает Чехов, как беспомощно трудились над этой задачей и семиклассник-репетитор, и его ученик, двенадцатилетний Петя, пока не выручил их Петин отец, Удодов:

«Петя повторяет задачу и тотчас же, ни слова не говоря, начинает делить 540 на 138.

- Для чего же вы делите? Постойте! Впрочем, так… продолжайте. Остаток получается? Здесь не может быть остатка. Дайте-ка, я разделю!

Математика для любознательных (сборник)

Зиберов [репетитор] делит, получает 3 с остатком и быстро стирает.

- Странно… - думает он, ероша волосы и краснея. - Как же она решается? Гм!… Это задача на неопределенные уравнения, а вовсе не арифметическая.

Учитель глядит в ответы и видит 75 и 63.

- Гм!… странно… Сложить 5 и 3, а потом делить 540 на 8? Так, что ли? Нет, не то!

- Решайте же! - говорит он Пете.

- Ну, чего думаешь? Задача -то ведь пустяковая, - говорит Удодов Пете. - Экий ты дурак, братец! Решите уже вы ему, Егор Алексеич.

Егор Алексеич [репетитор] берет в руки грифель и начинает решать. Он заикается, краснеет, бледнеет.

- Эта задача, собственно говоря, алгебраическая, - говорит он. - Ее с иксом и игреком решить можно. Впрочем, можно и так решить. Я вот разделил… Понимаете? Или вот что. Решите мне эту задачу к завтрему… Подумайте…

Петя ехидно улыбается, Удодов тоже улыбается. Оба они понимают замешательство учителя. Ученик VII класса еще пуще конфузится, встает и начинает ходить из угла в угол.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию