Краткая история времени: От Большого Взрыва до черных дыр - читать онлайн книгу. Автор: Стивен Хокинг cтр.№ 40

читать книги онлайн бесплатно
 
 

Онлайн книга - Краткая история времени: От Большого Взрыва до черных дыр | Автор книги - Стивен Хокинг

Cтраница 40
читать онлайн книги бесплатно

Прогресс человека на пути познания Вселенной привел к возникновению маленького уголка порядка в растущем беспорядке Вселенной. Если вы запомните каждое слово из этой книжки, то ваша память получит около двух миллионов единиц информации, и порядок в вашей голове возрастет примерно на два миллиона единиц. Но пока вы читали эту книгу, по крайней мере тысяча калорий упорядоченной энергии, которую вы получили в виде пищи, превратились в неупорядоченную энергию, которую вы передали в окружающий вас воздух в виде тепла за счет конвекции и потовыделения. Беспорядок во Вселенной возрастет при этом примерно на двадцать миллионов миллионов миллионов миллионов единиц, что в десять миллионов миллионов миллионов раз превышает указанное увеличение порядка в вашем мозгу, – и это произойдет лишь в том случае, если вы запомните всё из моей книжки. В следующей главе я постараюсь навести у нас в головах еще больший порядок. Я расскажу о том, как люди пытаются объединить друг с другом те отдельные теории, о которых я рассказал, стараясь создать полную единую теорию, которая охватывала бы все, что происходит во Вселенной.

Глава десятая
Объединение физики

Как уже говорилось в гл. 1, совсем не просто сразу строить полную единую теорию всего, что происходит во Вселенной. Поэтому мы продвигаемся вперед, создавая частные теории, описывающие какую-то ограниченную область событий, и либо пренебрегаем остальными эффектами, либо приближенно заменяем их некоторыми числами. (Например, в химии можно рассчитывать взаимодействия атомов, не зная внутреннего строения атомного ядра.) Но можно надеяться на то, что в конце концов будет найдена полная, непротиворечивая единая теория, в которую все частные теории будут входить в качестве приближений и которую не нужно будет подгонять под эксперимент подбором значений входящих в нее произвольных величин. Работа по созданию такой теории называется объединением физики. Последние годы своей жизни Эйнштейн почти целиком посвятил поискам единой теории, но время для этого тогда еще не пришло: существовали частные теории гравитации и электромагнитных взаимодействий, но о ядерных силах было мало что известно. К тому же Эйнштейн отказывался верить в реальность квантовой механики, несмотря на ту огромную роль, которую он сам сыграл в ее развитии. Но принцип неопределенности является, по-видимому, фундаментальным свойством Вселенной, в которой мы живем. Поэтому он обязательно должен быть составной частью правильной единой теории.

Дальше я покажу, что надежды на построение такой теории сильно возросли, ибо мы сейчас значительно больше узнали о Вселенной. Но не нужно быть чересчур уверенным – мы уже не раз сталкивались с миражами! Например, в начале века считалось, что все можно объяснить с помощью свойств, характеризующих непрерывное вещество, скажем, таких, как упругость и теплопроводность. Открытие строения атома и принципа неопределенности навсегда покончило с подобным подходом. Затем в 1928 г. физик, лауреат Нобелевской премии Макс Борн, выступая перед гостями Гёттингенского университета, сказал: «Физика в том смысле, в котором мы ее понимаем, через полгода кончится». В своей уверенности Борн основывался на недавно открытом Дираком уравнении для электрона. Все думали, что аналогичное уравнение должно существовать и для протона – второй из двух известных тогда частиц, – и тогда теоретическая физика кончится. Но открытие нейтрона и ядерных сил развеяло и эти предсказания. И все же я уверен, что сейчас есть основания для осторожного оптимизма: мы, пожалуй, близки к завершению поисков окончательных законов природы.

В предыдущих главах я говорил об общей теории относительности, которая представляет собой частную теорию гравитации, и о частных теориях, описывающих слабые, сильные и электромагнитные взаимодействия. Последние три теории могут быть объединены в так называемые теории великого объединения, которые нельзя считать достаточно удовлетворительными, потому что они не включают гравитацию и содержат величины, например относительные массы разных частиц, которые не вычисляются теоретически и должны подбираться из условия наилучшего согласия с экспериментом. Основная трудность построения теории, которая объединяла бы гравитацию с остальными силами, связана с тем, что общая теория относительности представляет собой классическую теорию, т. е. не включает в себя квантово-механический принцип неопределенности. Другие же частные теории существенно связаны с квантовой механикой. Поэтому прежде всего общую теорию относительности необходимо объединить с принципом неопределенности. Мы знаем, что результатом такого объединения станет ряд удивительных следствий: черные дыры перестанут быть черными, а из Вселенной исчезнут сингулярности, и она станет полностью замкнутой и не имеющей границ. Но, как уже объяснялось в гл. 7, здесь возникают затруднения, связанные с тем, что в силу принципа неопределенности даже пустое пространство заполнено парами виртуальных частиц и античастиц. Эти пары обладают бесконечной энергией, а потому в соответствии со знаменитым уравнением Эйнштейна Е=mс² их масса тоже должна быть бесконечна. Следовательно, под действием создаваемого ими гравитационного притяжения Вселенная должна, искривляясь, сворачиваться до бесконечно малых размеров.

Такие же нелепые бесконечности возникают и в других частных теориях, но их всегда можно устранить с помощью процедуры, которая называется перенормировкой. Метод перенормировок предписывает введение новых бесконечностей для компенсации старых. Несмотря на свою неполную математическую обоснованность, этот метод успешно применяется, и полученные с его помощью предсказания частных теорий чрезвычайно точно согласуются с результатами наблюдений. Однако в плане поиска завершенной теории метод перенормировок обладает одним серьезным недостатком: он не позволяет теоретически предсказать действительные значения масс и сил; их приходится подбирать путем подгонки к эксперименту.

При попытках включить принцип неопределенности в общую теорию относительности имеются только два числа, которые можно подгонять: величина гравитационной силы и космологическая постоянная. Но их изменением невозможно устранить все бесконечности. Значит, мы имеем теорию, согласно которой некоторые величины, например кривизна пространства-времени, должны быть бесконечными, несмотря на то что эти величины можно наблюдать, и из измерений вытекает, что они конечны! Эта проблема, возникающая при объединении общей теории относительности с принципом неопределенности, какое-то время считалась сомнительной, но в конце концов ее реальность была, наконец, подтверждена детальными расчетами в 1972 г. Через четыре года появилось одно из возможных ее решений, названное теорией супергравитации. Суть этой теории в том, что гравитон (частица со спином 2, являющаяся переносчиком гравитационного взаимодействия) объединяется с некоторыми новыми частицами, имеющими спины 3/2, 1, 1/2 и 0. Тогда все эти частицы в каком-то смысле можно рассматривать как разные виды одной и той же «суперчастицы», осуществив таким образом объединение частиц материи, имеющих спины 1/2 и 3/2, с частицами – переносчиками взаимодействия, спины которых равны 0, 1 и 2. Виртуальные пары частица – античастица со спином 1/2 и 3/2 обладают при этом отрицательной энергией, компенсирующей положительную энергию виртуальных пар со спином 2, 1, 0. В результате многие бесконечности будут устранены, но есть подозрения, что какая-то их часть может все же остаться. Однако выяснение того, все ли бесконечности устранены, требовало столь громоздких и сложных расчетов, что ими никто не собирался заниматься. Оценки показали, что даже с помощью компьютера работа заняла бы никак не меньше четырех лет, и при этом очень велика вероятность хоть раз ошибиться. Следовательно, в ответе можно быть уверенным лишь в том случае, если кто-нибудь другой повторил бы все вычисления и получил тот же результат, а на это трудно рассчитывать.

Вернуться к просмотру книги Перейти к Оглавлению Перейти к Примечанию