Жаростойкость позволяет организму занять отдельную экологическую нишу, на которую не будут претендовать другие. Однако она может стать и оружием. Японская медоносная пчела (Apis cerana japonica) использует жар собственного тела для защиты от хищных шершней (Vespa mandarinia japonica), гораздо более чувствительных к высоким температурам. Если шершень пытается напасть на колонию пчел, они набрасываются на обидчика скопом, окружая его со всех сторон. Температура внутри этого жужжащего клубка моментально подскакивает до 48° С – смертельных для шершня, но не опасных для пчел. Незваный гость просто поджаривается заживо.
При температуре выше 50° С погибает большинство клеток, поскольку белок плохо переносит перегрев. Молекулярные вибрации, начинающиеся под воздействием жары, разрывают белок на части, распуская зрелые белковые цепочки и препятствуя правильной укладке новых. Такая денатурация опасна, поскольку белок перестает нормально выполнять свои функции. Структурные белки истощаются, а ферменты не могут катализировать биохимические реакции. О том, чем грозит неправильная укладка формирующегося белка, британское население теперь осведомлено достаточно широко, поскольку губкообразная энцефалопатия крупного рогатого скота (или «коровье бешенство») вызывается как раз специфической формой неверно свернувшегося белка, который провоцирует искажение и остальных, нормальных, белков. По неизученным пока причинам неправильно свернувшийся белок токсичен и вызывает гибель нейронов.
Тепловое повреждение белка практически необратимо. Вареный яичный белок так и останется твердым, белым и резиновым – даже после охлаждения его невозможно вернуть в прежнее текучее состояние. Остывший бифштекс хоть и не так вкусен, как горячий, все равно остается куском прожаренного мяса с уничтоженными высокой температурой мышечными волокнами. Однако после менее серьезных повреждений клетки способны восстанавливаться – с помощью белка теплового шока. Эти молекулярные телохранители наводят порядок, заставляя белок свернуться заново, на этот раз правильно. Необратимо поврежденный белок помечается и разлагается на составляющие его аминокислоты, которые затем снова используются. То есть белок теплового шока – это что-то вроде биохимической пожарной команды.
Белок состоит из линейной цепочки аминокислот, но, подобно нитке бус, упавшей на пол, эта цепочка сворачивается в гораздо более сложные фигуры. Иногда цепочки соединяются попарно или большим количеством, образуя крупные молекулы (например, инсулин состоит из двух субъединиц, гемоглобин – из четырех). Огромное значение имеет пространственная структура белка. Сигнальная молекула должна идеально стыковаться с принимающим рецептором, ферменты должны правильно обволакивать свои субстраты, структурные белки – плотно укладываться в слой. Сворачивание белка зависит от его аминокислотной последовательности, однако внутри клетки процесс сворачивания затрудняет высокая концентрация других белков. Из-за этого молекулярного столпотворения белок может вместо собственной цепочки образовывать случайные связи с соседними белками. Для того чтобы этого не происходило, существуют белки-телохранители – белки-«дуэньи», выполняющие, по сути, ту же роль, что и настоящие дуэньи в викторианскую эпоху. Они помогают другим белкам и при обычной температуре, но когда температура растет, их число тоже значительно увеличивается. Именно поэтому их назвали белками теплового шока – они вырабатываются в основном как реакция на жару. Между тем у нас по-прежнему остается неразрешимая загадка: чем обеспечивается правильное сворачивание самих белков-телохранителей при критической температуре?
Между тем своей жаростойкостью гипертермофилы обязаны не только деятельности белков-телохранителей. Многие другие ферменты и структурные белки – и даже сами механизмы, отвечающие за синтез белка, – демонстрируют необычайную тепловую выносливость. Несмотря на гораздо более высокую жаропрочность, некоторые ферменты в организме гипертермофилов на аминокислотном уровне почти не отличаются от наших. Выходит, разница в несколько аминокислот может оказаться весьма существенной.
Подсевшие на кислоту
Однажды ночью я меняла аккумулятор в машине, ковыряясь под крышкой капота с фонариком в одной руке и гаечным ключом в другой, – и нечаянно уронила ключ. Он упал на клеммы, закоротив аккумулятор, и тот взорвался, обдав меня кислотными брызгами. В лицо и руки как будто впились сотни горячих игл. Кинувшись в панике промывать глаза, я даже не обратила внимание на брызги кислоты, попавшие на джинсы. На следующий день я надела джинсы, и они расползлись практически на ходу.
Как и хлопковые нити в ткани джинсов, органические соединения нашей кожи разрушаются кислотой. С помощью кислотных ванн очищают скелеты, предназначенные для анатомических экспозиций. В триллерах они служат не самым привычным, зато нагоняющим достаточно страху способом избавиться от трупа. И, к сожалению, способ этот встречается не только в книгах. Печально известный серийный убийца Джон Хейг, на счету которого по крайней мере шесть убитых в Британии 1940-х, растворял трупы жертв в серной кислоте. Его выдала мелочь – не растворившаяся вставная челюсть жертвы, сделанная из акриловой пластмассы. Однако кислоты используются и в более гуманных целях. Например, разведенную хлористоводородную кислоту применяют в лечебных и дезинфицирующих целях. Кислота губительна для многих организмов, в том числе и патогенных.
Кислотность или щелочность раствора (его водородный показатель – pH) зависит от содержания в нем ионов водорода. Чем их больше, тем раствор кислотнее, и наоборот. Водородный показатель определяется как отрицательный десятичный логарифм концентрации ионов водорода. Это значит, что у кислотного раствора (с высокой концентрацией ионов водорода) pH будет низким. У щелочного же ионов водорода мало, а pH высокий. Запутаться немудрено, однако в наши дни, благодаря рекламе, pH давно у всех на слуху. Мыло, шампунь – а иногда и напитки – рекламируются как «pH-сбалансированные». Садоводам тоже приходится думать о водородном показателе почвы на своем участке, поскольку любители кислых почв, вроде вереска и азалий, в щелочной известковой почве не приживутся, тогда как гвоздики предпочитают как раз ее и погибают в кислотной. Полезно также помнить, что pH – это логарифмическая функция, и разница в одну единицу pH соответствует десятикратной разнице в содержании ионов водорода. Поэтому уксус (чей pH равен 2) содержит почти в миллиард раз больше ионов водорода, чем нашатырный спирт (pH 11).
Большинство клеток предпочитают pH-нейтральную среду (7,0), где концентрация ионов водорода такая же, как и концентрация гидроксильных ионов (ион водорода и гидроксильная группа образуют молекулу воды). Кроме того, клетки чувствительны даже к незначительным изменениям водородного показателя, поэтому pH крови человека тщательно регулируется средствами организма. Нормальный для крови показатель pH – около 7,4. Повышение до 7,7 или спад до 7,0 несовместимы с жизнью.
Однако многие бактерии и археи, напротив, предпочитают сильно кислую или сильно щелочную среду. Ацидофилам – любителям кислоты – нравится pH менее пяти. Они обитают в горячих геотермальных источниках, где растворенные в воде сернистые газы образуют серную кислоту, или в кислотных водах, сочащихся из отвалов шлака вокруг старых шахт. Другие живут в уксусе и лимонном соке (вот почему эти продукты со временем портятся). К числу самых удивительных представителей этой группы относится Thiobacillus ferrooxidans. Она добывает энергию из углекислого газа, кислорода, серы и закиси железа, производя в процессе серную кислоту и соли железа, которые окрашивают ручьи, вытекающие из заброшенных шахт, в яркий желто-коричневый цвет и сильно окисляют воду (до pH равного двум). Для большинства водных форм жизни и кислота, и растворенные металлы токсичны. Однако T. ferrooxidans обладает еще более поразительной способностью, как подсказывает ее второе название – T. concretivorans (пожирательница бетона). Она питает особую страсть к низкомарочному бетону, богатому серой, особенно если он армирован металлическими прутьями. К ужасу строителей, бактерия вырабатывает столько серной кислоты, что бетон начинает «гнить». В результате рушатся мосты и эстакады, крошатся плиты многоэтажек. Прошло немало времени, прежде чем удалось установить виновницу бетонной гнили, поскольку плотность ее крайне низка – одной бактерии для одноразового деления требуется потребить железа в 50 раз больше собственного веса.